An Automatic Patch-based Approach for HER-2 Scoring in Immunohistochemical Breast Cancer Images Using Color Features
Resumo
Breast cancer (BC) is the most common cancer among women worldwide, approximately 20-25% of BCs are HER-2 positive. Analysis of HER-2 is fundamental to defining the appropriate therapy for patients with breast cancer. Inter-pathologist variability in the test results can affect diagnostic accuracy. The present study intends to propose an automatic scoring HER-2 algorithm. Based on color features, the technique is fully-automated and avoids segmentation, showing a concordance higher than 90% with a pathologist in the experiments realized.
Referências
Breiman, L. (1984). Classification and Regression Trees. Routledge.
Brügmann, A., Eld, M., Lelkaitis, G., Nielsen, S., Grunkin, M., Hansen, J. D., Foged, N. T., and Vyberg, M. (2012). Digital image analysis of membrane connectivity is a robust measure of her2 immunostains. Breast Cancer Research and Treatment, 132(1):41–49.
Coelho, L. P. (2013). Mahotas: Open source software for scriptable computer vision. Journal of Open Research Software, 1(3):131 – 155.
Coelho, L. P., Ahmed, A., an Joshua Kangas, A. A., Sheikh, A.-S., Xing, E. P., Cohen, W. W., and Murphy, R. F. (2010). Structured literature image finder: extracting information from text and images in biomedical literature. Web Semantics: Science, Services and Agents on the World Wide Web, 8(2-3).
Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms NN pattern Classification Techniques.
DeSantis, C., Ma, J., Bryan, L., and Jemal, A. (2014). Breast cancer statistics, 2013. CA: a cancer journal for clinicians, 64(1):52–62.
Dobson, L., Conway, C., Hanley, A., Johnson, A., Costello, S., O’Grady, A., Connolly, Y., Magee, H., O’Shea, D., Jeffers, M., and Kay, E. (2010). Image analysis as an adjunct to manual her-2 immunohistochemical review: a diagnostic tool to standardize interpretation. Histopathology, 57(1):27–38.
Gaur, U., Kourakis, M., Newman-Smith, E., Smith, W., and Manjunath, B. (2016). Membrane segmentation via active learning with deep networks. In Image Processing (ICIP), 2016 IEEE International Conference on, pages 1943–1947. IEEE.
Goode, A., Gilbert, B., Harkes, J., Jukic, D., and Satyanarayanan, M. (2013). Openslide: A vendor-neutral software foundation for digital pathology. Journal of pathology informatics, 4.
Hall, B. H., Ianosi-Irimie, M., Javidian, P., Chen, W., Ganesan, S., and Foran, D. J. (2008). Computer-assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls. BMC Medical Imaging, 8(1):11.
INCA (2014). Estimativa 2014 – incidência de câncer no brasil. [link]. Visited em 08/11/2015.
INCA (2018). Estimativa 2018 – incidência de câncer no brasil. [link]. Visited em 03/05/2018.
Jacques, F., Isabelle, S., Rajesh, D., Sultan, E., Colin, M., Marise, R., Maxwell, P. D., David, F., and Freddie, B. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. International Journal of Cancer, 136(5):E359–E386.
Jeung, J., Patel, R. A., Vila, L., Wakefield, D. S., and Liu, C. (2012). Quantitation of her2/neu expression in primary gastroesophageal adenocarcinomas using conventional light microscopy and quantitative image analysis. Archives of pathology & laboratory medicine, 136 6:610–7.
Joshi, A. S., Sharangpani, G. M., Porter, K., Keyhani, S., Morrison, C., Basu, A. S., Gholap, G. A., Gholap, A. S., and Barsky, S. H. (2007). Semi-automated imaging system to quantitate her-2/neu membrane receptor immunoreactivity in human breast cancer. Cytometry Part A, 71A(5):273–285.
Kumar, V., Abbas, A. K., and Aster, J. C. (2013). Robbins Basic Pathology. Elsevier Health Sciences.
LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient backprop. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop, pages 9–50. Springer-Verlag.
Masmoudi, H., Hewitt, S. M., Petrick, N., Myers, K. J., and Gavrielides, M. A. (2009). Automated quantitative assessment of her-2/neu immunohistochemical expression in breast cancer. IEEE Transactions on Medical Imaging, 28(6):916–925.
Ojala, T., MattiPietikäinen, and Harwood, D. (1996). A comparative study of texture measures with classification based on featured distribution. Pattern Recognition, 1(29):51–59.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
Qaiser, T., Mukherjee, A., PB, C. R., Munugoti, S. D., Tallam, V., Pitkäaho, T., Lehtimäki, T., Naughton, T., Berseth, M., Pedraza, A., Mukundan, R., Smith, M., Bhalerao, A., Rodner, E., Simon, M., Denzler, J., Huang, C.-H., Bueno, G., Snead, D., Ellis, I. O., Ilyas, M., and Rajpoot, N. (2018). Her2 challenge contest: a detailed assessment of automated her2 scoring algorithms in whole slide images of breast cancer tissues. Histopathology, 72(2):227–238.
Saha, M. and Chakraborty, C. (2018). Her2net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Transactions on Image Processing, 7149(c):1–1.
Skaland, I., Øvestad, I. T., Janssen, E., Klos, J., Kjellevold, K. H., Helliesen, T., and Baak, J. P. A. (2008). Comparing subjective and digital image analysis her2/neu expression scores with conventional and modified fish scores in breast cancer. Journal of Clinical Pathology, 61(1):68–71.
Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., Baselga, J., and Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses her2. New England Journal of Medicine, 344(11):783–792.
Tuominen, V. J., Tolonen, T. T., and Isola, J. (2012). Immunomembrane: a publicly available web application for digital image analysis of her2 immuno-histochemistry. Histopathology, 60(5):758–767.
Vandenberghe, M. E., Scott, M. L. J. S., Scorer, S. W., Magnus Söderberg, D. B., and Barker, C. (2017). Relevance of deep learning to facilitate the diagnosis of her2 status in breast cancer. Scientific Reports, 7(45938).
Vapnik, V. and Cortes, C. (1995). Support-vector networks. Machine Learning, 20:273–297.
Viale, G., Paterson, J., Bloch, M., Csathy, G., Allen, D., Dell’Orto, P., Kjærsgaard, G., Levy, Y. Y., and Jørgensen, J. T. (2016). Assessment of her2 amplification status in breast cancer using a new automated her2 iqfish pharmdxTM (dako omnis) assay. Pathology - Research and Practice, 212(8):735 – 742.
Yaziji, H., Goldstein, L. C., Barry, T. S., Werling, R., Hwang, H., Ellis, G. K., Gralow, J. R., Livingston, R. B., and Gown, A. M. (2004). HER-2 testing in breast cancer using parallel tissue-based methods. Jama, 291(16):1972–1977.
