Simulation of Trap Applications in the Fight Against Aedes aegypti
Abstract
The Aedes aegypti mosquito is the main vector of Dengue Fever, Zika, Chikungunya and Yellow Fever diseases. This article describes a computer simulation of the mosquito behavior and of the mosquito traps effectiveness in a predefined geographic setting. The computer simulation models three fundamental aspects: (i) the reproduction of mosquitoes in foci, (ii) the growth of mosquito population, and (iii) the combat of vector through traps. The main goal of this simulation is to verify the most suitable places for the deployment of traps to combat mosquitoes, in order to decrease the chances of an epidemic outbreak. The main result of this work is a tool that contributes to the planning of vector combat, improving the effectiveness of prevention.
References
Braga, I. A. and Valle, D. (2007). Aedes aegypti: histórico do controle no Brasil. Epidemiologia e serviços de saúde, 16(2):113–118.
Dzul-Manzanilla, F. et al. (2016). Indoor resting behavior of aedes aegypti (diptera culicidae) in Acapulco, Mexico. Journal of Medical Entomology.
Fiorini, S. T. et al. (2016). Vigilância entomológica da dengue, zika e chikungunya: Uma solução baseada em redes sociais e dispositivos móveis. 16o Workshop de Informática Médica.
Ghamarian, A. H., de Mol, M., Rensink, A., Zambon, E., and Zimakova, M. (2012). Modelling and analysis using GROOVE. International journal on software tools for technology transfer, 14(1):15–40.
Johnson, B. J., Ritchie, S. A., and Fonseca, D. M. (2017). The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects, 8(1):5.
Lima, T. et al. (2014). A framework for modeling and simulating aedes aegypti and dengue fever dynamics. In Proceedings of the 2014 Winter Simulation Conference, pages 1481–1492. IEEE Press.
Lok, C., Kiat, N., and Koh, T. (1977). An autocidal ovitrap for the control and possible eradication of aedes aegypti. The Southeast Asian journal of tropical medicine and public health, 8(1):56–62.
Maimusa, H. A., Ahmad, A. H., Kassim, N. F. A., and Rahim, J. (2016). Age-stage, two-sex life table characteristics of aedes albopictus and aedes aegypti in Penang Island, Malaysia. Journal of the American Mosquito Control Association, 32(1):1–11.
Moraes, L. et al. (2015). Sistema web de baixo custo geolocalizador para prevenção de casos da dengue. Seminário Integrado de Software e Hardware.
Morato, V. et al. (2005). Infestation of aedes aegypti estimated by oviposition traps in brazil. Revista de saude publica, 39(4):553–558.
OpenStreetMap (2017). OpenStreetMap. [link].
Ramos, A. S., Zambon, E., and Boeres, M. C. S. (2016). Aplicação de métodos de busca guiada na exploração do espaço de estados de gramáticas de grafos. In Anais do XLVIII - Simpósio Brasileiro de Pesquisa Operacional. SOBRAPO – Sociedade Brasileira Pesquisa Operacional.
Rensink, A. (2003). The GROOVE simulator: A tool for state space generation. In International Workshop on Applications of Graph Transformations with Industrial Relevance, pages 479–485. Springer.
Rensink, A. and Zambon, E. (2017). GROOVE - GRaphs for Object-Oriented VErification. [link].
Sivagnaname, N., Gunasekaran, K., et al. (2012). Need for an efficient adult trap for the surveillance of dengue vectors. Indian Journal of Medical Research, 136(5):739.
Vasconcelos, P. F. d. C. (2015). Doença pelo vírus zika: um novo problema emergente nas américas? Revista Pan-Amazônica de Saúde, 6(2):9–10.
WHO (2017). World Health Organization: Dengue Control. [link].