A proposal of a graph-based computational method for ranking significant set of related genes in cancer

  • Jorge Francisco Cutigi IFSP
  • Adriane Feijó Evangelista USP
  • Adenilso da Silva Simão CPOM

Resumo


Identifying significant mutations in cancer is a key point in Cancer Genomics, and it is one of the biggest challenges in the area. Computational methods for identifying significant mutations have been developed in recent years. In this work, we present a proposal of a flexible computational method with an extensive biological base for ranking significant set of related genes in cancer. Our method considers data about mutations, type of mutations, gene interaction networks and mutual exclusivity pattern.

Referências

Cheng, F., Zhao, J., and Zhao, Z. (2015). Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Briefings in Bioinformatics, 17(4):642. http://dx.doi.org/10.1093/bib/bbv068

Ciriello, G., Cerami, E., Sander, C., and Schultz, N. (2012). Mutual exclusivity analysis identifies oncogenic network modules. Genome Res, 22. http://dx.doi.org/10.1101/gr.125567.111

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., Milacic, M., Roca, C. D., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Viteri, G., Weiser, J., Wu, G., Stein, L., Hermjakob, H., and D’Eustachio, P. (2018). The reactome pathway knowledgebase. Nucleic Acids Research, 46(D1):D649–D655. http://dx.doi.org/10.1093/nar/gkx1132

Hou, J. P. and Ma, J. (2013). Identifying Driver Mutations in Cancer, pages 33–56. Springer Netherlands. http://dx.doi.org/10.1007/978-94-007-7975-4_3

Kim, Y.-A., Madan, S., and Przytycka, T. M. (2017). Wesme: uncovering mutual exclusivity of cancer drivers and beyond. Bioinformatics, 33(6):814–821. http://dx.doi.org/10.1093/bioinformatics/btw242

Leiserson, M. D. M., Blokh, D., Sharan, R., and Raphael, B. J. (2013). Simultaneous identification of multiple driver pathways in cancer. PLOS Computational Biology, 9(5):1–15. http://dx.doi.org/10.1371/journal.pcbi.1003054

Leiserson, M. D. M., Vandin, F., Wu, H.-T., Dobson, J. R., Eldridge, J. V., Thomas, J. L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M., Lawrence, M. S., Gonzalez-Perez, A., Tamborero, D., Cheng, Y., Ryslik, G. A., Lopez-Bigas, N., Getz, G., Ding, L., and Raphael, B. J. (2015). Pan cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 47(2):106–114. http://dx.doi.org/10.1038/ng.3168

Raphael, B. J., Dobson, J. R., Oesper, L., and Vandin, F. (2014). Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Medicine, 6(1):5. http://dx.doi.org/10.1186/gm524

Reyna, M. A., Leiserson, M. D. M., and Raphael, B. J. (2018). Hierarchical hotnet: identifying hierarchies of altered subnetworks. Bioinformatics, 34(17):i972–i980. http://dx.doi.org/10.1093/bioinformatics/bty613

Stratton, M. R. (2009). The cancer genome. Nature, 458(7239):719–724. http://dx.doi.org/10.1038/nature07943

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550. http://dx.doi.org/10.1073/pnas.0506580102

Vandin, F., Upfal, E., and Raphael, B. J. (2011). Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology, 18(3):507–522. http://dx.doi.org/10.1089/cmb.2010.0265

Vandin, F., Upfal, E., and Raphael, B. J. (2012). De novo discovery of mutated driver pathways in cancer. Genome research, 22(2):375–385. http://dx.doi.org/10.1101/gr.120477.111.
Publicado
11/06/2019
CUTIGI, Jorge Francisco; EVANGELISTA, Adriane Feijó; SIMÃO, Adenilso da Silva. A proposal of a graph-based computational method for ranking significant set of related genes in cancer. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 19. , 2019, Niterói. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 300-305. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2019.6266.