A proposal of a graph-based computational method for ranking significant set of related genes in cancer
Resumo
Identifying significant mutations in cancer is a key point in Cancer Genomics, and it is one of the biggest challenges in the area. Computational methods for identifying significant mutations have been developed in recent years. In this work, we present a proposal of a flexible computational method with an extensive biological base for ranking significant set of related genes in cancer. Our method considers data about mutations, type of mutations, gene interaction networks and mutual exclusivity pattern.
Referências
Ciriello, G., Cerami, E., Sander, C., and Schultz, N. (2012). Mutual exclusivity analysis identifies oncogenic network modules. Genome Res, 22. http://dx.doi.org/10.1101/gr.125567.111
Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., Milacic, M., Roca, C. D., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Viteri, G., Weiser, J., Wu, G., Stein, L., Hermjakob, H., and D’Eustachio, P. (2018). The reactome pathway knowledgebase. Nucleic Acids Research, 46(D1):D649–D655. http://dx.doi.org/10.1093/nar/gkx1132
Hou, J. P. and Ma, J. (2013). Identifying Driver Mutations in Cancer, pages 33–56. Springer Netherlands. http://dx.doi.org/10.1007/978-94-007-7975-4_3
Kim, Y.-A., Madan, S., and Przytycka, T. M. (2017). Wesme: uncovering mutual exclusivity of cancer drivers and beyond. Bioinformatics, 33(6):814–821. http://dx.doi.org/10.1093/bioinformatics/btw242
Leiserson, M. D. M., Blokh, D., Sharan, R., and Raphael, B. J. (2013). Simultaneous identification of multiple driver pathways in cancer. PLOS Computational Biology, 9(5):1–15. http://dx.doi.org/10.1371/journal.pcbi.1003054
Leiserson, M. D. M., Vandin, F., Wu, H.-T., Dobson, J. R., Eldridge, J. V., Thomas, J. L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M., Lawrence, M. S., Gonzalez-Perez, A., Tamborero, D., Cheng, Y., Ryslik, G. A., Lopez-Bigas, N., Getz, G., Ding, L., and Raphael, B. J. (2015). Pan cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 47(2):106–114. http://dx.doi.org/10.1038/ng.3168
Raphael, B. J., Dobson, J. R., Oesper, L., and Vandin, F. (2014). Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Medicine, 6(1):5. http://dx.doi.org/10.1186/gm524
Reyna, M. A., Leiserson, M. D. M., and Raphael, B. J. (2018). Hierarchical hotnet: identifying hierarchies of altered subnetworks. Bioinformatics, 34(17):i972–i980. http://dx.doi.org/10.1093/bioinformatics/bty613
Stratton, M. R. (2009). The cancer genome. Nature, 458(7239):719–724. http://dx.doi.org/10.1038/nature07943
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550. http://dx.doi.org/10.1073/pnas.0506580102
Vandin, F., Upfal, E., and Raphael, B. J. (2011). Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology, 18(3):507–522. http://dx.doi.org/10.1089/cmb.2010.0265
Vandin, F., Upfal, E., and Raphael, B. J. (2012). De novo discovery of mutated driver pathways in cancer. Genome research, 22(2):375–385. http://dx.doi.org/10.1101/gr.120477.111.