Um Sistema Inteligente para a Avaliação de Risco da DRC e Encaminhamento de Pacientes em Emergência para Unidades de Saúde

  • Andressa Carvalho Melo da Silveira UFAL
  • Leandro Dias da Silva UFAL
  • Álvaro Sobrinho UFAL / UFAPE

Abstract


The high incidence and prevalence of Chronic Kidney Disease (CKD), often caused by late diagnoses, is a critical public health problem. Qualitative and quantitative comparative analyzes were performed, by a systematic literature review and an experiment with machine learning techniques, respectively. The J48 decision tree, with 95.00% accuracy, was used to develop an intelligent system to assess the risk of CKD. In addition, when the patient with CKD is out of his/her municipality and an emergency occurs, the system recommends the patient to attend to an appropriate healthcare facility, depending on the clinical situation, to prevent the late or inadequate healthcare.

References

S. B. Diabetes. Diretrizes da sociedade brasileira de diabetes. Grupo Gen-AC Far macêutica, 2000.

A. Forbes and H. Gallagher. Chronic kidney disease in adults: assessment and manage ment. Clinical Medicine, 20(2):128, 2020.

L. A. Inker, B. C. Astor, C. H. Fox, T. Isakova, J. P. Lash, C. A. Peralta, M. K. Tamura, and H. I. Feldman. Kdoqi us commentary on the 2012 kdigo clinical practice guideline for the evaluation and management of ckd. American Journal of Kidney Diseases, 63 (5):713–735, 2014.

B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in software engineering. Technical report, 2007.

E. J. Lamb, A. S. Levey, and P. E. Stevens. The kidney disease improving global outcomes (kdigo) guideline update for chronic kidney disease: evolution not revolution. Clinical chemistry, 59(3):462–465, 2013.

A. Sobrinho, L. D. da Silva, A. Perkusich, M. E. Pinheiro, and P. Cunha. Design and evaluation of a mobile application to assist the self-monitoring of the chronic kidney disease in developing countries. BMC Medical Informatics and Decision Making, 18 (1):7, Jan 2018. ISSN 1472-6947. doi: 10.1186/s12911-018-0587-9.

A. Sobrinho, A. C. D. S. Queiroz, L. D. Da Silva, E. D. B. Costa, M. E. Pinheiro, and A. Perkusich. Computer-aided diagnosis of chronic kidney disease in developing countries: A comparative analysis of machine learning techniques. IEEE Access, 8:25407– 25419, 2020.

A. C. Webster, E. V. Nagler, R. L. Morton, and P. Masson. Chronic kidney disease. The lancet, 389(10075):1238–1252, 2017.

C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th international conference on evaluation and assessment in software engineering, pages 1–10, 2014.
Published
2021-06-15
SILVEIRA, Andressa Carvalho Melo da; SILVA, Leandro Dias da; SOBRINHO, Álvaro. Um Sistema Inteligente para a Avaliação de Risco da DRC e Encaminhamento de Pacientes em Emergência para Unidades de Saúde. In: THESIS AND DISSERTATION CONTEST - BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTHCARE (SBCAS), 21. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 37-42. ISSN 2763-8987. DOI: https://doi.org/10.5753/sbcas.2021.16098.