Assistente inteligente para auxiliar na prevenção do diabetes Tipo 2
Resumo
Neste artigo é apresentado um assistente inteligente para auxiliar na prevenção do diabetes tipo 2. O assistente é baseado em técnicas de in- teligência artificial, tomando como base o modelo de um sistema especialista, e representação do conhecimento e do raciocı́nio de um especialista. O uso de um aplicativo para dispositivos móveis pode favorecer, principalmente, populações de baixa renda e geograficamente remotas, que têm dificuldades de ter acesso a um especialista para acompanhamento contı́nuo.
Referências
Fioravanti, A., Fico, G., Arredondo, M. T., and Leuteritz, J. . (2011). A mobile feedback system for integrated e-health platforms to improve self-care and compliance of diabetes mellitus patients. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 3550–3553.
Leal, L. B., Moura, I. H., de Carvalho, R. B. N., Leal, N. T. B., Silva, A. Q., and da Silva, A. R. V. (2014). Qualidade de vida relacionada à saúde de pessoas com diabetes mellitus tipo 2. Revista da Rede de Enfermagem do Nordeste, 15:676–682.
Rodbard, D. and Vigersky, R. A. (2011). Design of a decision support system to help clinicians manage glycemia in patients with type 2 diabetes mellitus. Journal of Diabetes Science and Technology, 5(2):402–411.
Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Series in Artificial Intelligence. Prentice Hall, Upper Saddle River, NJ, third edition.
Santos, K., Feistauer, L., Carvalho, M., Silva, L., and Rezende, K. (2012). Sisped 2.0: An extension of a system to monitor diabetic patients. In 2012 6th Euro American Conference on Telematics and Information Systems (EATIS), pages 1–8.
Shortliffe, E. H. (1977). Mycin: A knowledge-based computer program applied to infectious diseases. In Proceedings of the Annual Symposium on Computer Application in Medical Care, page 66–69.
Souza, C. F. d., Gross, J. L., Gerchman, F., and Leit˜ao, C. B. (2012). Pré-diabetes: diagnóstico, avaliação de complicações crônicas e tratamento. Arquivos Brasileiros de Endocrinologia e Metabologia, 56:275 – 284.
Wang, L., Pedersen, P. C., Strong, D. M., Tulu, B., Agu, E., and Ignotz, R. (2015). Smartphonebased wound assessment system for patients with diabetes. IEEE Transactions on Biomedical Engineering, 62(2):477–488.
Wei, S., Zhao, X., and Miao, C. (2018). A comprehensive exploration to the machine learning techniques for diabetes identification. In 2018 IEEE 4th World Forum on Internet of Things(WF-IoT), pages 291–295.