Avaliação do Comportamento de Estudantes em um Ambiente Educacional Ubíquo
Resumo
Computadores têm se misturado cada vez mais no cotidiano das pessoas. No contexto educacional, esses dispositivos dão origem aos chamados Ambientes Educacionais Ubíquos que potencializam o processo de aprendizagem em um contexto mais dinâmico e engajador. O uso destes sistemas origina dados valiosos que podem ser explorados por técnicas de mineração de dados. Diante disso, este trabalho analisa dados de um Ambiente Educacional Ubíquo com auxílio da técnica de agrupamento de dados a fim de observar o comportamento de estudantes em sessões de aprendizagem. Resultados mostraram diferenças estatisticamente significantes nos grupos encontrados e indícios de Aprendizado Autorregulado em um dos grupos.
Palavras-chave:
Ambiente Educacional Ubíquo, Mineração de Dados Educacionais, Aprendizado Autorregulado
Referências
Abowd, G. D., Atkeson, C. G., Feinstein, A., Hmelo, C., Kooper, R., Long, S., Sawhney,N., e Tani, M. (1997). Teaching and learning as multimedia authoring: The class-room 2000 project. In Proceedings of the Fourth ACM International Conference onMultimedia, página 187–198, New York, NY, USA. ACM.
Aggarwal, C. C. (2015).Data mining: the textbook. Springer, 1 edition.
Araújo, R. D., Brant-Ribeiro, T., Ferreira, H., Dorça, F., e Cattelan, R. (2016). Segmentação colaborativa de objetos de aprendizagem utilizando bookmarks em ambientes educacionais ubíquos. In Anais do XXVII do Simpósio Brasileiro de Informática na Educação, páginas 1205–1214. SBC.
Araújo, R. D., Dorça, F. A., e Cattelan, R. G. (2018). A Computational Architecture for Learning Objects Authoring and Personalization in Ubiquitous Learning Environments. In Anais dos Workshops do VII Congresso Brasileiro de Informática na Educação, páginas 22–31. SBC.
Baker, R., Isotani, S., e Carvalho, A. (2011). Mineração de dados educacionais: Oportunidades para o brasil. Revista Brasileira de Informática na Educação, 19(02):03.
Chrysafiadi, K. e Virvou, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40(11):4715 – 4729.
do Carmo, Ê. P., Gasparini, I., e Oliveira, E. (2019). Captura e visualização das trajetótias de aprendizagem como ferramentas para a análise do comportamento dos estudantes em um ambiente adaptativo educacional. In Anais do XXX Simpósio Brasileiro de Informática na Educação, páginas 309–318. SBC.
El-Halees, A. M. (2009). Mining students data to analyze e-learning behavior: A case study. Mining students data to analyze e-Learning behavior: A Case Study, 29.
García, E., Romero, C., Ventura, S., e De Castro, C. (2011). A collaborative educational association rule mining tool. The Internet and Higher Education, 14(2):77–88.
Jie, W., Hai-yan, L., Biao, C., e Yuan, Z. (2017). Application of educational data mining on analysis of students’ online learning behavior. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC), páginas 1011–1015. IEEE.
Kitsantas, A. (2013). Fostering college students’ self-regulated learning with learning technologies. Hellenic Journal of Psychology, 10(3):235–252.
Lallé, S. e Conati, C. (2020). A data-driven student model to provide adaptive support during video watching across moocs. In International Conference on Artificial Intelligence in Education, páginas 282–295. Springer.
Pimentel, M. d. G., Ishiguro, Y., Kerimbaev, B., Abowd, G., e Guzdial, M. (2001). Supporting educational activities through dynamic web interfaces. Interacting with Computers, 13(3):353–374.
Razali, N. M., Wah, Y. B., et al. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1):21–33.
Urdan, T. (2010).Statistics in Plain English, Third Edition. Taylor & Francis.
Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3):66–75.
Zhao, X. e Okamoto, T. (2011). Adaptive multimedia content delivery for context-aware u-learning. International Journal of Mobile Learning and Organisation, 5(1):46–63.
Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key sub pro-cesses? Contemporary Educational Psychology, 11(4):307–313.
Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American educational research journal, 45(1):166–183.
Aggarwal, C. C. (2015).Data mining: the textbook. Springer, 1 edition.
Araújo, R. D., Brant-Ribeiro, T., Ferreira, H., Dorça, F., e Cattelan, R. (2016). Segmentação colaborativa de objetos de aprendizagem utilizando bookmarks em ambientes educacionais ubíquos. In Anais do XXVII do Simpósio Brasileiro de Informática na Educação, páginas 1205–1214. SBC.
Araújo, R. D., Dorça, F. A., e Cattelan, R. G. (2018). A Computational Architecture for Learning Objects Authoring and Personalization in Ubiquitous Learning Environments. In Anais dos Workshops do VII Congresso Brasileiro de Informática na Educação, páginas 22–31. SBC.
Baker, R., Isotani, S., e Carvalho, A. (2011). Mineração de dados educacionais: Oportunidades para o brasil. Revista Brasileira de Informática na Educação, 19(02):03.
Chrysafiadi, K. e Virvou, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40(11):4715 – 4729.
do Carmo, Ê. P., Gasparini, I., e Oliveira, E. (2019). Captura e visualização das trajetótias de aprendizagem como ferramentas para a análise do comportamento dos estudantes em um ambiente adaptativo educacional. In Anais do XXX Simpósio Brasileiro de Informática na Educação, páginas 309–318. SBC.
El-Halees, A. M. (2009). Mining students data to analyze e-learning behavior: A case study. Mining students data to analyze e-Learning behavior: A Case Study, 29.
García, E., Romero, C., Ventura, S., e De Castro, C. (2011). A collaborative educational association rule mining tool. The Internet and Higher Education, 14(2):77–88.
Jie, W., Hai-yan, L., Biao, C., e Yuan, Z. (2017). Application of educational data mining on analysis of students’ online learning behavior. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC), páginas 1011–1015. IEEE.
Kitsantas, A. (2013). Fostering college students’ self-regulated learning with learning technologies. Hellenic Journal of Psychology, 10(3):235–252.
Lallé, S. e Conati, C. (2020). A data-driven student model to provide adaptive support during video watching across moocs. In International Conference on Artificial Intelligence in Education, páginas 282–295. Springer.
Pimentel, M. d. G., Ishiguro, Y., Kerimbaev, B., Abowd, G., e Guzdial, M. (2001). Supporting educational activities through dynamic web interfaces. Interacting with Computers, 13(3):353–374.
Razali, N. M., Wah, Y. B., et al. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1):21–33.
Urdan, T. (2010).Statistics in Plain English, Third Edition. Taylor & Francis.
Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3):66–75.
Zhao, X. e Okamoto, T. (2011). Adaptive multimedia content delivery for context-aware u-learning. International Journal of Mobile Learning and Organisation, 5(1):46–63.
Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key sub pro-cesses? Contemporary Educational Psychology, 11(4):307–313.
Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American educational research journal, 45(1):166–183.
Publicado
24/11/2020
Como Citar
COSTA, Juliete A. R.; DORÇA, Fabiano A.; ARAÚJO, Rafael D..
Avaliação do Comportamento de Estudantes em um Ambiente Educacional Ubíquo. In: SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), 31. , 2020, Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2020
.
p. 182-191.
DOI: https://doi.org/10.5753/cbie.sbie.2020.182.