CRISP-EDM: a proposal to adapt the CRISP-DM model for educational data mining
Abstract
This theoretical article presents a proposal to adapt the consolidated CRISP-DM data mining model to educational data scenarios, whether they come from online teaching platforms or from sources such as national course exams or even academic management systems. Despite fully following the six steps of the original model, the proposed model, here called CRISP-EDM, presents some particularities due to the types of data and the educational domain. The model has already been used in two approved doctoral theses and is now presented in more detail in this work. This is expected to contribute to research in the field of educational data mining.
Keywords:
EDM, Learning Analytics, KDD
References
AZEVEDO, A. I. R. L.; SANTOS, M. F. KDD, SEMMA and CRISP-DM: a parallel overview. IADIS European Conference on Data Mining, 2008, IADIS. p.182–185.
BAKER, R. S. J. D.; ISOTANI, S.; CARVALHO, A. M. J. B. D. Mineração de dados educacionais: Oportunidades para o brasil. Revista Brasileira de Informática na Educação, v. 19, n. 2, 2011.
CHAPMAN, P. et al. CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, v. 9, p. 13, 2000.
ESPITIA, E. et al. Applying CRISP-DM in a KDD process for the analysis of student attrition. In: Colombian Conference on Computing. Springer, Cham, 2018. p. 386-401.
FERNÁNDEZ, D. B.; MORA, S. L.. Uso de la metodología CRISP-DM para guiar el proceso de minería de datos en LMS. In: Tecnología, innovación e investigación en los procesos de enseñanza-aprendizaje. Octaedro, 2016. p. 2385-2393.
GARCÍA, E. et al. A collaborative educational association rule mining tool. The Internet and Higher Education, v. 14, n. 2, p. 77-88, 2011. ISSN 1096-7516.
KABAKCHIEVA, D.; STEFANOVA, K.; KISIMOV, V. Analyzing university data for determining student profiles and predicting performance. Educational Data Mining 2010, 2010.
KOEDINGER, K. R. et al. Educational software features that encourage and discourage “gaming the system”. Proceedings of the 14th International Conference on Artificial Intelligence in Education, 2009. p.475-482.
KOVACIC, Z. Early prediction of student success: Mining students' enrolment data. Informing Science & IT Education Conference (InSITE), 2010.
MARTÍNEZ-PLUMED, F. et al. CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 2019. doi: 10.1109/TKDE.2019.2962680.
MODELER, IBM SPSS. IBM SPSS modeler text analytics 16 user guide. 2016.
MOORE, M. G. Theory of transactional distance. In: (Ed.). Theoretical Principles of Distance Education. New York: Routledge, 1993. p.22-29.
ORESKI, D.; PIHIR, I.; KONECKI, M.. Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, p. 19-28, 2017.
RAMOS, J. L. C. Uma abordagem preditiva da evasão na educação a distância a partir dos construtos da distância transacional. Tese de Doutorado (Centro de Informática –UFPE), 2016. Disponível em http://bit.ly/TeseJorge. Acesso em 02 jul 20.
RIBEIRO, R. C.; CANEDO, E. D. Using Data Mining Techniques to Perform School Dropout Prediction: A Case Study. In: 17th International Conference on Information Technology–New Generations (ITNG 2020). Springer, Cham, 2020. p. 211-217.
RODRIGUES, R. L. Uma abordagem de mineração de dados educacionais para previsão de desempenho a partir de padrões comportamentais de autorregulação da aprendizagem. Tese de Doutorado (Centro de Informática – UFPE), 2016. Disponível em http://bit.ly/TeseRodrigo. Acesso em 10 jul 20.
SAHAY, A.; MEHTA, K. Assisting higher education in assessing, predicting, and managing issues related to student success: A web-based software using data mining and quality function deployment. Academic and Business Research Institute Conference, 2010.
SHEARER, C. The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, v. 5, n. 4, p. 13-22, 2000.
SHETH, J.; PATEL, B. Best practices for adaptation of Data mining techniques in Education Sector. National Journal of System and Information Technology, v. 3, n. 2, p. 186, 2010. ISSN 0974-3308.
SILVEIRA, R. F. et al. Educational Data Mining: Analysis of Drop out of Engineering Majors at the UnB-Brazil. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. p. 259-262.
VIALARDI, C. et al. A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, v. 21, n. 1-2, p. 217-248, 2011. ISSN 0924-1868.
ZIMMERMAN, B. J.; PONS, M. M. Development of a structured interview for assessing student use of self-regulated learning strategies. American educational research journal, v. 23(4), p. 614-628, 1986.
BAKER, R. S. J. D.; ISOTANI, S.; CARVALHO, A. M. J. B. D. Mineração de dados educacionais: Oportunidades para o brasil. Revista Brasileira de Informática na Educação, v. 19, n. 2, 2011.
CHAPMAN, P. et al. CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, v. 9, p. 13, 2000.
ESPITIA, E. et al. Applying CRISP-DM in a KDD process for the analysis of student attrition. In: Colombian Conference on Computing. Springer, Cham, 2018. p. 386-401.
FERNÁNDEZ, D. B.; MORA, S. L.. Uso de la metodología CRISP-DM para guiar el proceso de minería de datos en LMS. In: Tecnología, innovación e investigación en los procesos de enseñanza-aprendizaje. Octaedro, 2016. p. 2385-2393.
GARCÍA, E. et al. A collaborative educational association rule mining tool. The Internet and Higher Education, v. 14, n. 2, p. 77-88, 2011. ISSN 1096-7516.
KABAKCHIEVA, D.; STEFANOVA, K.; KISIMOV, V. Analyzing university data for determining student profiles and predicting performance. Educational Data Mining 2010, 2010.
KOEDINGER, K. R. et al. Educational software features that encourage and discourage “gaming the system”. Proceedings of the 14th International Conference on Artificial Intelligence in Education, 2009. p.475-482.
KOVACIC, Z. Early prediction of student success: Mining students' enrolment data. Informing Science & IT Education Conference (InSITE), 2010.
MARTÍNEZ-PLUMED, F. et al. CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 2019. doi: 10.1109/TKDE.2019.2962680.
MODELER, IBM SPSS. IBM SPSS modeler text analytics 16 user guide. 2016.
MOORE, M. G. Theory of transactional distance. In: (Ed.). Theoretical Principles of Distance Education. New York: Routledge, 1993. p.22-29.
ORESKI, D.; PIHIR, I.; KONECKI, M.. Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, p. 19-28, 2017.
RAMOS, J. L. C. Uma abordagem preditiva da evasão na educação a distância a partir dos construtos da distância transacional. Tese de Doutorado (Centro de Informática –UFPE), 2016. Disponível em http://bit.ly/TeseJorge. Acesso em 02 jul 20.
RIBEIRO, R. C.; CANEDO, E. D. Using Data Mining Techniques to Perform School Dropout Prediction: A Case Study. In: 17th International Conference on Information Technology–New Generations (ITNG 2020). Springer, Cham, 2020. p. 211-217.
RODRIGUES, R. L. Uma abordagem de mineração de dados educacionais para previsão de desempenho a partir de padrões comportamentais de autorregulação da aprendizagem. Tese de Doutorado (Centro de Informática – UFPE), 2016. Disponível em http://bit.ly/TeseRodrigo. Acesso em 10 jul 20.
SAHAY, A.; MEHTA, K. Assisting higher education in assessing, predicting, and managing issues related to student success: A web-based software using data mining and quality function deployment. Academic and Business Research Institute Conference, 2010.
SHEARER, C. The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, v. 5, n. 4, p. 13-22, 2000.
SHETH, J.; PATEL, B. Best practices for adaptation of Data mining techniques in Education Sector. National Journal of System and Information Technology, v. 3, n. 2, p. 186, 2010. ISSN 0974-3308.
SILVEIRA, R. F. et al. Educational Data Mining: Analysis of Drop out of Engineering Majors at the UnB-Brazil. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. p. 259-262.
VIALARDI, C. et al. A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, v. 21, n. 1-2, p. 217-248, 2011. ISSN 0924-1868.
ZIMMERMAN, B. J.; PONS, M. M. Development of a structured interview for assessing student use of self-regulated learning strategies. American educational research journal, v. 23(4), p. 614-628, 1986.
Published
2020-11-24
How to Cite
RAMOS, Jorge Luis Cavalcanti; RODRIGUES, Rodrigo Lins; SILVA, João Carlos Sedraz; OLIVEIRA, Pamella Letícia Silva de.
CRISP-EDM: a proposal to adapt the CRISP-DM model for educational data mining. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 31. , 2020, Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2020
.
p. 1092-1101.
DOI: https://doi.org/10.5753/cbie.sbie.2020.1092.
