A Fala Sintetizada de Expressões Matemáticas: Um Estudo para melhoria do Processo Cognitivo do Estudante com Deficiência Visual
Resumo
A fala sintetizada de conteúdos matemáticos ainda apresenta desafios para estudantes que fazem uso dos leitores de tela, entre os quais podemos citar, as pausas inadequadas e as longas saídas auditivas, o que dificulta a memorização desse tipo de conteúdo. Nesse estudo realizamos dois experimentos com o objetivo de identificar e analisar processos capazes de reduzir a sobrecarga cognitiva da fala sintetizada de expressões matemáticas codificadas em MathML. O primeiro experimento visou verificar as dificuldades encontradas pelos estudantes com deficiência visual, além de analisar um modelo de pausas proposto. O segundo experimento buscou compreender os processos cognitivos para memorização de expressões matemáticas, através da técnica de rastreamento ocular de pessoas videntes. Embora alguns resultados não tenham sido conclusivos, a pesquisa mostrouse relevante, pois aponta direções que podem minimizar a carga mental e, consequentemente melhorar o processo cognitivo do estudante na leitura de expressões matemáticas.
Referências
Bansal, Akashdeep e M. Balakrishnan. 2021. “Evaluating Cognitive Complexity of Algebraic Equations”. The Journal on Technology and Persons with Disabilities 170.
Bates, Enda e Donal Fitzpatrick. 2010. “Spoken Mathematics using Prosody, Earcons and Spearcons 2 Visual and Audible Representations of Mathematical Material”.
Bitter, Marc. 2013. “Braille in Mathematics Education”. Radboud University Nijmegen Braille.
Boersma, Paul e David Weenink. 2018. “Praat: doing phonetics by computer”.
Campione, Estelle e Jean Véronis. 2002. “A Large-Scale Multilingual Study of Silent Pause Duration”. Speech Prosody 2002, abril, 4.
Carlisle, David, Patrick Ion, e Robert Miner. 2014. Mathematical markup language (MathML) version 3.0 2nd edition, W3C recommendation, W3C.
Chomsky, Noam. 1964. “Formal discussion of the development of grammar in child language by W. Miller & S. Ervin”. The Acquisition of language.
Chomsky, Noam. 2009. Syntactic structures. De Gruyter Mouton. Ernest, Paul. 1987. “a Model of the Cognitive Meaning of Mathematical Expressions”. British Journal of Educational Psychology 57(3):343–70.
Ferreira, Helder e Diamantino Freitas. 2004. “Enhancing the accessibility of mathematics for blind people: The audiomath project”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3118:678–85.
Frankel, Lois e Beth Brownstein. 2016. “An Evaluation of the Usefulness of Prosodic and Lexical Cues for Understanding Synthesized Speech of Mathematics”. ETS Research Report Series 2016(2):1–19.
Frankel, Lois, Beth Brownstein, Neil Soiffer, e Eric Hansen. 2016. “Development and Initial Evaluation of the ClearSpeak Style for Automated Speaking of Algebra”. ETS Research Report Series 2016(2):1–43.
Hartmann, Matthias. 2015. “Numbers in the eye of the beholder: What do eye movements reveal about numerical cognition?” Cognitive Processing 16:245–48.
Kintsch, Walter. 1978. “Comprehension and memory of text”. Handbook of learning and cognitive processes 6:57–86.
Kohlhase, Andrea e Michael Kohlhase. 2021. “Conceptual Design for an Eye-Tracking Experiment on Formula Linebreaking”. in 14th Conference on Intelligent Computer Mathematics (CICM 2021).
Maier, H. R., Z. Kapelan, J. Kasprzyk, J. Kollat, L. S. Matott, M. C. Cunha, G. C. Dandy, M. S. Gibbs, E. Keedwell, A. Marchi, A. Ostfeld, D. Savic, D. P. Solomatine, J. A. Vrugt, A. C. Zecchin, B. S. Minsker, E. J. Barbour, G. Kuczera, F. Pasha, A. Castelletti, M. Giuliani, e P. M. Reed. 2014. “Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions”. Environmental Modelling & Software 62:271–99.
Nazemi, Azadeh, Iain Murray, e Nazanin Mohammadi. 2012. “Mathspeak: An Audio Method for Presenting Mathematical Formulae to Blind Students”. P. 48--52 in 5th International Conference on Human System Interactions.
O’Malley, Michael H., Dean R. Kloker, e Benay Dara-Abrams. 1973. “Recovering Parentheses From Spoken Algebraic Expressions”. IEEE Transactions on Audio and Electroacoustics 21(3):217–20.
Plummer, Patrick, Melissa DeWolf, Miriam Bassok, Peter C. Gordon, e Keith J. Holyoak. 2017. “Reasoning strategies with rational numbers revealed by eye tracking”. Attention, Perception, and Psychophysics 79(5):1426–37.
Rayner, Keith. 1998. “Eye movements in reading and information processing: 20 years of research”. Psychological Bulletin 124:372.
Reich, S. S. 1980. “Significance of pauses for speech perception”. Journal of Psycholinguist 379–389.
Röder, Brigitte, Frank Rösler, e Helen J. Neville. 2001. “Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation”. Cognitive Brain Research 11(2):289–303.
Rumelhart, David e Donald A. Norman. 1981. “Analogical processes in learning”. Cognitive skills and their acquisition 335–59.
Rumsey, Deborah J. 2016. “How to interpret a correlation coefficient r”. Statistics For Dummies.
Schindler, Maike, · Achim, e J. Lilienthal. 2022. “Students’ collaborative creative process and its phases in mathematics: an explorative study using dual eye tracking and stimulated recall interviews”. 54:163–78.
Souza, Adriana e Diamantino Freitas. 2018. “Tecnologias Assistivas para Apoiar o Ensino e Aprendizagem de Pessoas com Deficiência Visual na Matemática: Uma Revisão Sistemática da Literatura”. P. 923 in Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018). Vol. 1. Brazilian Computer Society (Sociedade Brasileira de Computação - SBC).
Stevens, Robert David. 1996. “Principles for the design of auditory interfaces to present complex information to blind people”. University of York.
Zaiontz, Charles. 2022. “Real statistics using Excel. 2015”. in [Computer software] http://www.realstatistics.com/free-download/ (accessed 2 May 2022).