Clustering students based on the semantic similarity of concept maps

  • Rodrigo Ruy Boguski Federal University of Espírito Santo
  • Davidson Cury Federal University of Espírito Santo

Abstract


Semantically comparing content produced by different students and identifying existing clusters based on this similarity is a major challenge for teachers. This work presents a proposal for the formation of semantic clustering of students from the semantic comparison of conceptual maps constructed by them. Its approach is the automated reading of concept maps, using them as input to vector models of natural language processing that consider thematic and semantic aspects and the context of words. The analyzes carried out make it possible to compare the conceptual models that different individuals have on a subject and plan interactions between them.

Keywords: Clustering students, Semantic similarity, Concept maps

References

Aguiar, C. Z., Cury, D., & Zouaq, A. (2017). Mineração de Mapas Conceituais para Sumarização de Textos. VI Congresso Brasileiro de Informática na Educação (CBIE 2017), (pp. 57-66).

Ausubel, D. P., Novak, J., & Hanesian, H. (1978). Educational psychology: a cognitive view (2nd ed.). New York: Holt Rinehart and Winston. doi: https://doi.org/10.1037/016814

Barrios, F., López, F., Argerich, L., & Wachenchauzer, R. (2015). Variations of the Similarity Function of TextRank for Automated Summarization. Argentine Symposium on Artificial Intelligence. Buenos Aires. Retrieved from https://arxiv.org/abs/1602.03606

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993-1022. Retrieved from https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

Boguski, R. R., & Cury, D. (2018). Usando regras de associação para a identificação de falhas conceituais. Simpósio Brasileiro de Informática na Educação (SBIE), (pp. 1443- 1453). Fortaleza.

Boguski, R. R., & Cury, D. (2019). Fatores que influenciam a aprendizagem assistida em mapas conceituais. XXX Simpósio Brasileiro de Informática na Educação. Brasília.

Boguski, R. R., Cury, D., & Gava, T. (2019). TOM: An intelligent tutor for the construction of knowledge represented in concept maps. Frontiers in Education (FIE). Cincinnati.

Caldas, V. M., & Favero, E. L. (2009). Uma Ferramenta de Avaliação Automática para Mapas Conceituais como Auxílio ao Ensino em Ambientes de Educação a Distância. XX Simpósio Brasileiro de Informática na Educação. doi: http://dx.doi.org/10.5753/cbie.sbie.2009.%25p

Charlet, D., & Damnati, G. (2017). Soft-Cosine Semantic Similarity between Questions for Community Question Answering. Proceedings of the 11th International Workshop on Semantic Evaluation, (pp. 315–319). Vancouver, Canada. doi: http://dx.doi.org/10.18653/v1/S17-2051

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications. SIAM. doi: https://doi.org/10.1137/1.9780898718348

Gómez-Gauchía, H., Díaz-Agudo, B., & Gonzalez-Calero, P. A. (2004). Two-layered approach to knowledge representation using conceptual maps and description logics. Concept Maps: Theory, Methodology, Technology, Proc. of the First Int. Conf. on Concept. Retrieved from http://cmc.ihmc.us/Papers/cmc2004-205.pdf

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., & Wu, A. (2002). An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, (pp. 881 - 892). doi: https://doi.org/10.1109/TPAMI.2002.1017616

Kim, S.-W., & Gil, J.-M. (2019). Research paper classification systems based on TF-IDF and LDA schemes. Human-centric Computing and Information Sciences. doi: https://doi.org/10.1186/s13673-019-0192-7

Lamas, F., Boeres, C., Cury, D., & Menezes, C. S. (2005). Comparando mapas conceituais utilizando correspondência de grafos. Simpósio Brasileiro De Informática Na Educação - SBIE, (pp. 24-27).

Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. Proceedings of the 31st International Conference on International Conference on Machine Learning, (pp. 1188-1196). Retrieved from https://arxiv.org/abs/1405.4053

Limongelli, C., Sciarrone, F., Lombardi, M., Marani, A., & Temperini, M. (2017). A framework for comparing concept maps. 16th International Conference on Information Technology Based Higher Education and Training (ITHET). doi: https://doi.org/10.1109/ITHET.2017.8067818

Marcos P. D. Lovati, C. Z. (2017). Clusterizando Mapas Conceituais para Identificar Desempenho Cognitivo em Grupos. VI Congresso Brasileiro de Informática na Educação (CBIE 2017), (pp. 1397-1406). Recife, PE. doi: http://dx.doi.org/10.5753/cbie.sbie.2017.1397

Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing Order into Texts. Conference on Empirical Methods in Natural Language Processing, (pp. 404–411). Barcelona, Spain. Retrieved from https://www.aclweb.org/anthology/W04-3252

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ICLR Workshop Papers. Retrieved from https://arxiv.org/abs/1301.3781

Moreira, R. B., Boguski, R. R., & Cury, D. (2021). Utilizando análise semântica para descobrir implicações significantes em mapas conceituais. ANAIS DO XXXII SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, (pp. 123-134). doi: https://doi.org/10.5753/sbie.2021.218489

Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010). Automatic Evaluation of Topic Coherence. The 2010 Annual Conference of the In Human Language Technologies: North American Chapter of the Association for Computational Linguistics (NAACL-HLT ’10), (pp. 100–108). Los Angeles, California. Retrieved from https://www.aclweb.org/anthology/N10-1012

Novak, J., & Gowin, D. (1984). Learning how to learn. Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781139173469

Novotný, V. (2018). Implementation Notes for the Soft Cosine Measure. re. In Proceedings of the 27th ACM International Conference on Information and Knowledge Man, (pp. 22-26). Torino, Italy. doi: http://doi.org/10.1145/3269206.3269317

Peters, S., & Shrobe, H. E. (2003). Using Semantic Networks for Knowledge Representation in an Intelligent Environment. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003, (pp. 323-329). doi: https://doi.org/10.1109/PERCOM.2003.1192756

Rios, P. T., Aguiar, C. Z., & Cury, D. (2017). Uma Abordagem construtivista para identificar o conhecimento usando mapa conceitual. VI Congresso Brasileiro de Informática na Educação (CBIE 2017), (pp. 394-403).

Saputra, D. M., Saputra, D., & Oswari, L. D. (2019). Effect of Distance Metrics in Determining K-Value in K-Means Clustering Using Elbow and Silhouette Method. Sriwijaya International Conference on Information Technology and Its Applications. doi: https://doi.org/10.2991/aisr.k.200424.051

Sidorov, G., Gelbukh, A., Gomez-Adorno, H., & Pinto, D. (2014). Soft Similarity and Soft Cosine Measure:Similarity of Features in Vector Space Model. Computación y Sistemas, 491–504. doi: https://doi.org/10.13053/cys-18-3-2043

Simón, A., L. C., & Rosete, A. (2007). Generation of OWL Ontologies from Concept Maps in Shallow Domains. Congresos de la Asociación Española para la Inteligencia Artificial)(CAEPIA), (pp. 259-267). doi: https://doi.org/10.1007/978-3-540-75271-4_27

Singhal, A. (2001). Modern Information Retrieval: A Brief Overview. Bull IEEE Comput Soc Tech Comm Data Eng, (pp. 35-43). Retrieved from http://www1.cs.columbia.edu/~gravano/cs6111/Readings/singhal.pdf

Vygotsky, L. (2007). A formação social da mente. In M. Fontes (Ed.), Interação entre aprendizado e desenvolvimento (7 ed.). São Paulo.

Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Processes. (J.-S. V. Cole M., Ed.) Cambridge, Massachusetts, London, England: Harvard University Press. doi: https://doi.org/10.2307/j.ctvjf9vz4

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM SIGMOD Record. doi: https://doi.org/10.1145/235968.233324
Published
2022-11-16
BOGUSKI, Rodrigo Ruy; CURY, Davidson. Clustering students based on the semantic similarity of concept maps. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 33. , 2022, Manaus. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 979-991. DOI: https://doi.org/10.5753/sbie.2022.224957.