Aprimorando a experiência de aprendizado em ambientes online massivos: o papel dos sistemas de recomendação

  • Wilson M. Sanches FURG
  • Fabiana Z. Ferreira FURG
  • Paulo J. D. O. Evald UFPel
  • André P. Vargas FURG
  • Jean L. Bez URI
  • Silvia S. da C. Botelho FURG

Resumo


O uso de ambiente massivo tem sido utilizado na educação, pois neste ambiente provê uma grande coleção de exercícios aos estudantes. Neste trabalho é proposto um sistema de recomendação para uso em juiz online nos ambientes de ensino massivo. O método proposto recomenda problemas considerando as habilidades e motivação do usuário, ou seja, recomenda exercícios resolvidos por outros usuários com habilidades e motivação semelhantes. Para tal, o método tradicional de filtragem colaborativa com uma medida de similaridade adaptada ao domínio atual foi adotado. Os efeitos das configurações da matriz usando métricas de Precisão e Recall são analisados.

Referências

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recommender systems survey. Knowledge-based systems, 46:109–132.

Chaves, J. O., Castro, A., Lima, R., Lima, M. V., and Ferreira, K. H. A. (2013). Uma ferramenta baseada em juízes online para apoio às atividades de programação de computadores no moodle. Revista Novas Tecnologias na Educação, 11(3):1–10.

Da Silva, E. Q., Camilo-Junior, C. G., Pascoal, L. M. L., and Rosa, T. C. (2016). An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering. Expert Systems with Applications, 53:204–218.

de Oliveira, M. G., da Silva, M. F., and Rodrigues, C. B. (2022). Curso híbrido baseado em moocs de lovelace e oficinas presenciais para aprendizagem ativa e nobre de pensamento computacional e programação. In Anais do XXVIII Workshop de Informática na Escola, pages 179–188. SBC.

Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10):78–87.

Hew, K. F. and Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (moocs): Motivations and challenges. Educational research review, 12:45–58.

Isinkaye, F. O., Folajimi, Y. O., and Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian informatics journal, 16(3):261–273.

Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., and Klein, M. (2002). Logistic regression. Springer.

Kop, R. (2011). The challenges to connectivist learning on open online networks: Learning experiences during a massive open online course. International Review of Research in Open and Distributed Learning, 12(3):19–38.

Nadolski, R. J., van den Berg, B., Berlanga, A. J., Drachsler, H., Hummel, H. G., Koper, R., and Sloep, P. B. (2009). Simulating light-weight personalised recommender systems in learning networks: A case for pedagogy-oriented and rating-based hybrid recommendation strategies. Journal of Artificial Societies and Social Simulation, 12(1):1–4.

Ramírez Luelmo, S. I., El Mawas, N., and Heutte, J. (2021). Learner models for mooc in a lifelong learning context: A systematic literature review. In Computer Supported Education: 12th International Conference, CSEDU 2020, Virtual Event, May 2–4, 2020, Revised Selected Papers 12, pages 392–415. Springer.

Reategui, E. B. and Cazella, S. C. (2005). Sistemas de recomendação. In XXV Congresso da Sociedade Brasileira de Computação, pages 306–348. SBC.

Regueras, L. M., Verdu, E., Munoz, M. F., Perez, M. A., De Castro, J. P., and Verdu, M. J. (2009). Effects of competitive e-learning tools on higher education students: A case study. IEEE Transactions on Education, 52(2):279–285.

Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3):56–58.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender Systems Handbook, pages 1–35. Springer.

Russell, S. J. and Norvig, P. (2004). Inteligencia Artificial: un enfoque moderno. Pearson Hall.

Souza, D. M., da Silva Batista, M. H., and Barbosa, E. F. (2016). Problemas e dificuldades no ensino de programação: Um mapeamento sistemático. Revista Brasileira de Informática na Educação, 24(1):39.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009:1–20.

Xiao, J., Wang, M., Jiang, B., and Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. Journal of ambient intelligence and humanized computing, 9:667–677.

Yera, R. and Martínez, L. (2017). A recommendation approach for programming online judges supported by data preprocessing techniques. Applied Intelligence, 47(2):277–290.
Publicado
06/11/2023
SANCHES, Wilson M.; FERREIRA, Fabiana Z.; EVALD, Paulo J. D. O.; VARGAS, André P.; BEZ, Jean L.; BOTELHO, Silvia S. da C.. Aprimorando a experiência de aprendizado em ambientes online massivos: o papel dos sistemas de recomendação. In: SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), 34. , 2023, Passo Fundo/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 164-174. DOI: https://doi.org/10.5753/sbie.2023.234741.