Integração do ROS em uma plataforma robótica móvel de baixo custo para o ensino superior

  • Anderson Abner de S. Souza UERN
  • Raul Benites Paradeda UERN

Resumo


A robótica móvel tem sido amplamente utilizada no ensino superior. Em geral, os robôs utilizados são caros ou os ambientes simulados não refletem completamente a realidade. Neste artigo, propomos o desenvolvimento de um framework de hardware de baixo custo para o ensino de robótica móvel no ensino superior. Utilizamos a placa NodeMCU - ESP8266 e integramos com o ROS (Robot Operating System). Isso permite um desenvolvimento e aprendizado mais eficientes, com abstração do hardware e uso de ferramentas existentes para facilitar a integração com sensores, atuadores e comunicação de dados. Realizamos testes utilizando dados sensoriais do robô construído e executamos diferentes algoritmos comumente explorados no ensino de robótica móvel.

Referências

Anwar, S., Bascou, N. A., Menekse, M., and Kardgar, A. (2019). A systematic review of studies on educational robotics. Journal of Pre-College Engineering Education Research (J-PEER), 9(2):2.

Araújo, A., Portugal, D., Couceiro, M. S., and Rocha, R. P. (2015). Integrating arduino-based educational mobile robots in ros. Journal of Intelligent & Robotic Systems, 77:281–298.

Bačík, J., Tkáč, P., Hric, L., Alexovič, S., Kyslan, K., Olexa, R., and Perduková, D. (2020). Phollower—the universal autonomous mobile robot for industry and civil environments with covid-19 germicide addon meeting safety requirements. Applied Sciences, 10(21):7682.

Bayer, J. and Faigl, J. (2019). On autonomous spatial exploration with small hexapod walking robot using tracking camera intel realsense t265. In 2019 European Conference on Mobile Robots (ECMR), pages 1–6. IEEE.

Bellas, F., Naya, M., Varela, G., Llamas, L., Bautista, M., Prieto, A., and Duro, R. J. (2018). Robobo: the next generation of educational robot. In ROBOT 2017: Third Iberian Robotics Conference: Volume 2, pages 359–369. Springer.

Eteokleous, N. (2018). Employing educational robotics for the development of problem-based learning skills. In Encyclopedia of Information Science and Technology, Fourth Edition, pages 2492–2502. IGI Global.

Feng, S., Shi, H., Huang, L., Shen, S., Yu, S., Peng, H., and Wu, C. (2021). Unknown hostile environment-oriented autonomous wsn deployment using a mobile robot. Journal of Network and Computer Applications, 182:103053.

Gasteiger, N., Hellou, M., and Ahn, H. S. (2021). Deploying social robots in museum settings: A quasi-systematic review exploring purpose and acceptability. International Journal of Advanced Robotic Systems, 18(6):17298814211066740.

Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23:34–46.

Gross, J. (2020). Interviewing roomba: A posthuman study of humans and robot vacuum cleaners. Explorations in Media Ecology, 19(3):285–297.

Karalekas, G., Vologiannidis, S., and Kalomiros, J. (2020). Europa: A case study for teaching sensors, data acquisition and robotics via a ros-based educational robot. Sensors, 20(9):2469.

Merlo-Espino, R., Villareal-Rodgríguez, M., Morita-Aleander, A., Rodríguez-Reséndiz, J., Pérez-Soto, G., and Camarillo-Gómez, K. (2018). Educational robotics and its impact in the development of critical thinking in higher education students. In 2018 XX Congreso Mexicano de Robótica (COMRob), pages 1–4. IEEE.

Miranda, A. C. (2022). Teaching ros2 with a minimalistic mobile robot.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous 11 robot systems and competitions, volume 1, pages 59–65. IPCB: Instituto Politécnico de Castelo Branco.

Mondada, F., Franzi, E., and Guignard, A. (1999). The development of khepera. In Experiments with the Mini-Robot Khepera, Proceedings of the First International Khepera Workshop, number CONF, pages 7–14.

Müller, M. and Koltun, V. (2021). Openbot: Turning smartphones into robots. In Proceedings of the International Conference on Robotics and Automation (ICRA).

Papadopoulos, I., Lazzarino, R., Miah, S., Weaver, T., Thomas, B., and Koulouglioti, C. (2020). A systematic review of the literature regarding socially assistive robots in pre-tertiary education. Computers & Education, 155:103924.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009). Ros: an open-source robot operating system. In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan.

R GOEBEL, P. (2012). Ros by example a do-it-yourself guide to the robot operating system volume 1.

Raudmäe, R., Schumann, S., Vunder, V., Oidekivi, M., Nigol, M. K., Valner, R., Masnavi, H., Singh, A. K., Aabloo, A., and Kruusamäe, K. (2023). Robotont–open-source and ros-supported omnidirectional mobile robot for education and research. HardwareX, page e00436.

Vaughan, R. T. and Gerkey, B. P. (2007). Reusable robot software and the player/stage project. Software Engineering for Experimental Robotics, pages 267–289.

Wang, X. V. and Wang, L. (2021). A literature survey of the robotic technologies during the covid-19 pandemic. Journal of Manufacturing Systems, 60:823–836.

Warren, J.-D., Adams, J., Molle, H., Warren, J.-D., Adams, J., and Molle, H. (2011). Arduino for robotics. Springer.
Publicado
06/11/2023
SOUZA, Anderson Abner de S.; PARADEDA, Raul Benites. Integração do ROS em uma plataforma robótica móvel de baixo custo para o ensino superior. In: SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), 34. , 2023, Passo Fundo/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 1661-1672. DOI: https://doi.org/10.5753/sbie.2023.234571.