Journey of Learner Application (JoLApp) - Planejando Aulas com Storytelling Digital Educacional Através de IA Generativa

Resumo


Se por um lado o emprego de tecnologias emergentes como IAs generativas (GenIA) trazem desafios à educação, por outro elas podem apresentar oportunidade de inovação para o ensino e aprendizado. Aliar tais tecnologias com abordagens lúdicas como storytelling digital (SD) pode motivar e engajar os alunos, melhorando seu aprendizado. Embora úteis, alinhar GenIAs com SDs não é trivial. Os professores precisam conhecer e saber utilizar ambas para tirar o máximo proveito delas. Assim, este artigo apresenta o Journey of Learner Application (JoLApp), cujo propósito é auxiliar os professores na criação de storytellings digitais educacionais (SDEs) a partir de GenIA. O JoLApp foi avaliado em uma prova de conceito com professores de diferentes níveis a partir do modelo de aceitação tecnológica TAM. Em seus resultados, observou-se evidências de que o JoLApp é fácil e útil pra preparar aulas envolvendo SDs e que os professores demonstraram intenções de uso futuro do sistema. Portanto, entende-se que este trabalho contribui para a informática na educação ao apresentar uma proposta inovadora alinhando tecnologias emergentes e abordagens educacionais lúdicas para auxiliar os professores em suas práticas docentes.
Palavras-chave: framework, professores, aulas, engajamento, motivação

Referências

Abdelmageed, M. e El-Naggar, Z. (2018). Digital storytelling enhances students’ speaking skills at zewail university of science and technology in egypt. In Society for Information Technology & Teacher Education International Conference, pages 278–287. Association for the Advancement of Computing in Education (AACE).

Alhussain, A. I. e Azmi, A. M. (2021). Automatic story generation: a survey of approaches. ACM Computing Surveys (CSUR), 54(5):1–38.

Arif, F. K. M., Zubir, N. Z., Mohamad, M., e Yunus, M. M. (2019). Benefits and challenges of using game-based formative assessment among undergraduate students. Humanities & Social Sciences Reviews, 7(4):203–213.

Baidoo-Anu, D. e Ansah, L. O. (2023). Education in the era of generative artificial intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning. Journal of AI, 7(1):52–62.

Basili, V. R. (1992). Software modeling and measurement: the goal/question/metric paradigm. Technical Report: University of Maryland, (CS-TR-2956, UMIACS-TR-92-9).

Bruner, J. S. (2009). Actual minds, possible worlds. Harvard university press.

Campbell, D. T. e Stanley, J. C. (2015). Experimental and quasi-experimental designs for research. Ravenio books.

Campbell, J. (2003). The hero’s journey: Joseph Campbell on his life and work, volume 7. New World Library.

Castro, P., Tucunduva, C. C., e Arns, E. M. (2008). A importância do planejamento das aulas para organização do trabalho do professor em sua prática docente. ATHENA Revista Científica de Educação, 10(10):49–62.

Çetin, E. (2021). Digital storytelling in teacher education and its effect on the digital literacy of pre-service teachers. Thinking Skills and Creativity, 39:100760.

Chaudhry, I. S., Sarwary, S. A. M., El Refae, G. A., e Chabchoub, H. (2023). Time to revisit existing student’s performance evaluation approach in higher education sector in a new era of chatgpt—a case study. Cogent Education, 10(1):2210461.

Chu, H. e Liu, S. (2023). Can ai tell good stories? narrative transportation and persuasion with chatgpt. PsyArXiv preprint.

Cotton, D. R., Cotton, P. A., e Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of chatgpt. Innovations in education and teaching international, 61(2):228–239.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3):297–334.

Crowder, M. J., Kimber, A., Smith, R., e Sweeting, T. (2017). Statistical analysis of reliability data. Routledge, Abingdon.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, pages 319–340.

De Jager, A., Fogarty, A., Tewson, A., Lenette, C., e Boydell, K. M. (2017). Digital storytelling in research: A systematic review. The Qualitative Report, 22(10):2548–2582.

Dungca, P. A. P. (2023). The incorporation of large language models (llms) in the field of education: Ethical possibilities, threats, and opportunities. In Philosophy of Artificial Intelligence and Its Place in Society, pages 78–97. IGI Global.

Farrokhnia, M., Banihashem, S. K., Noroozi, O., e Wals, A. (2024). A swot analysis of chatgpt: Implications for educational practice and research. Innovations in education and teaching international, 61(3):460–474.

Ferraz, A. P. d. C. M. e Belhot, R. V. (2010). Taxonomia de bloom: revisão teórica e apresentação das adequações do instrumento para definição de objetivos instrucionais. Gestão & produção, 17:421–431.

Halaweh, M. (2023). Chatgpt in education: Strategies for responsible implementation. Contemporary Educational Technology, 15(2), ep421.

Hattie, J. (2003). Teachers make a difference, what is the research evidence? In Paper presented at the Building Teacher Quality: What does the research tell us ACER Research Conference, Melbourne, Australia. Australian Council for Educational Research.

Herbold, S., Hautli-Janisz, A., Heuer, U., Kikteva, Z., e Trautsch, A. (2023). Ai, write an essay for me: A large-scale comparison of human-written versus chatgpt-generated essays. arXiv preprint arXiv:2304.14276.

Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., e Papin, K. (2023). Generative ai and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2):313–338.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., e Iwasawa, Y. (2022). Large language models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213.

Nagro, S. A., Fraser, D. W., e Hooks, S. D. (2019). Lesson planning with engagement in mind: Proactive classroom management strategies for curriculum instruction. Intervention in School and Clinic, 54(3):131–140.

Nair, V. e Md Yunus, M. (2022). Using digital storytelling to improve pupils’ speaking skills in the age of covid 19. Sustainability, 14(15):9215.

Niemi, H., Harju, V., Vivitsou, M., Viitanen, K., Multisilta, J., e Kuokkanen, A. (2014). Digital storytelling for 21st-century skills in virtual learning environments. Creative Education, 5(9):657–671.

Nikolic, S., Daniel, S., Haque, R., Belkina, M., Hassan, G. M., Grundy, S., Lyden, S., Neal, P., e Sandison, C. (2023). Chatgpt versus engineering education assessment: a multidisciplinary and multi-institutional benchmarking and analysis of this generative artificial intelligence tool to investigate assessment integrity. European Journal of Engineering Education, 48(4):559–614.

NSN (2024). What is storytelling? National Storytelling Network.

Ogunleye, B., Zakariyyah, K. I., Ajao, O., Olayinka, O., e Sharma, H. (2024). Higher education assessment practice in the era of generative ai tools. arXiv preprint arXiv:2404.01036.

Oliveira, E. e Classe, T. (2024). Proposta de um framework de storytelling para apoiar o ensino e aprendizado em sistemas de informação. In Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação, pages 281–284, Porto Alegre, RS, Brasil. SBC.

Pahi, K., Hawlader, S., Hicks, E., Zaman, A., e Phan, V. (2024). Enhancing active learning through collaboration between human teachers and generative ai. Computers and Education Open, 6:100183.

Peng, K., Ding, L., Zhong, Q., Shen, L., Liu, X., Zhang, M., Ouyang, Y., e Tao, D. (2023). Towards making the most of chatgpt for machine translation. arXiv preprint arXiv:2303.13780.

Psomos, P. e Kordaki, M. (2012). Pedagogical guidelines for the development of educational digital storytelling environments based on a pedagogical evaluation star. In EDULEARN12 Proceedings, pages 4697–4703. IATED.

Queiros, L. M., Silva, C. J., Gomes, A. S., e Moreira, F. (2019). Context analysis of teachers’ learning design practice through activity theory, distributed cognition, and situated cognition. In Learning Technology for Education Challenges: 8th International Workshop, LTEC 2019, Zamora, Spain, July 15–18, 2019, Proceedings 8, pages 247–259. Springer.

Rahman, M. M., Terano, H. J., Rahman, M. N., Salamzadeh, A., e Rahaman, M. S. (2023). Chatgpt and academic research: A review and recommendations based on practical examples. Journal of Education, Management and Development Studies, 3(1):1–12.

Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira Santini, F., Ladeira, W. J., Sun, M., Day, I., Rather, R. A., e Heathcote, L. (2023). The role of chatgpt in higher education: Benefits, challenges, and future research directions. Journal of Applied Learning and Teaching, 6(1).

Rizvic, S., Djapo, N., Alispahic, F., Hadzihalilovic, B., Cengic, F. F., Imamovic, A., Okanovic, V., e Boskovic, D. (2017). Guidelines for interactive digital storytelling presentations of cultural heritage. In 2017 9th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), pages 253–259. IEEE.

Sensinum (2020). What is proof of concept in software development? likely something else than you think. Sensinum. Disponível em [link], Acesso em 18 junho 2024.

Shahid, M. e Khan, M. R. (2022). Use of digital storytelling in classrooms and beyond. Journal of Educational Technology Systems, 51(1):63–77.

Shelton, C. C., Archambault, L. M., e Hale, A. E. (2017). Bringing digital storytelling to the elementary classroom: Video production for preservice teachers. Journal of Digital Learning in Teacher Education, 33(2):58–68.

Silva, C. J. P. d. (2020). Design de um sistema de informação para apoiar a atividade de planejamento de aulas: uma abordagem situada. Master’s thesis, Universidade Federal de Pernambuco.

Souza, A. C. d., Alexandre, N. M. C., e Guirardello, E. d. B. (2017). Propriedades psicométricas na avaliação de instrumentos: avaliação da confiabilidade e da validade. Epidemiologia e serviços de saúde, 26:649–659.

Sylaiou, S. e Dafiotis, P. (2020). Storytelling in virtual museums: engaging a multitude of voices. In Visual computing for cultural heritage, pages 369–388. Springer.

Ullman, J. B. e Bentler, P. M. (2012). Structural equation modeling. Handbook of Psychology, Second Edition, 2:1–30.

Van Gils, F. (2005). Potential applications of digital storytelling in education. In 3rd twente student conference on IT, volume 7.

Wang, C.-C. e Ku, H.-Y. (2010). A case study of an affective education course in taiwan. Educational Technology Research and Development, 58:613–628.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., e Le, Q. V. (2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., e Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382.

Yuksel-Arslan, P., Yildirim, S., e Robin, B. R. (2016). A phenomenological study: teachers’ experiences of using digital storytelling in early childhood education. Educational Studies, 42(5):427–445.

Yunus, M. M., Hashim, H., Embi, M. A., e Lubis, M. A. (2010). The utilization of ict in the teaching and learning of english:‘tell me more’. Procedia-Social and Behavioral Sciences, 9:685–691.

Zarei, A. A. e Ramezankhani, Z. (2018). The comparative effects of mnemonic keyword method, storytelling, and semantic publisher on l2 idiom learning. Teaching English Language, 12(1):31–60.
Publicado
04/11/2024
OLIVEIRA, Eduardo Gomes de; CLASSE, Tadeu Moreira de. Journey of Learner Application (JoLApp) - Planejando Aulas com Storytelling Digital Educacional Através de IA Generativa. In: SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), 35. , 2024, Rio de Janeiro/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 1629-1644. DOI: https://doi.org/10.5753/sbie.2024.242252.