Exploring Machine Learning for Supporting the Recognition of Dyslexia Symptoms in Children During the Literacy Process
Abstract
This work aims to develop and integrate a machine learning algorithm into the Alfaba device, an educational tool designed to support the literacy process, especially for students with dyslexia. The algorithm was created using the Affinity Propagation technique to analyze and group common errors in word construction, providing feedback tailored to students' needs. Using synthetic data, the model was tested and demonstrated the ability to identify and cluster writing errors. This study highlights the algorithm's potential to enhance Alfaba's performance, making it an even more robust tool for supporting students with learning difficulties.
References
Associação Brasileira de Dislexia (2016). O que e dislexia?
Chen, L., Chen, P., and Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8:75264–75278.
Cidrim, L. and Madeiro, F. (2017). Tecnologias da informação e da comunicação (tic) aplicadas à dislexia: revisão de literatura. Revista CEFAC, 19:99–108.
Ene, A. and Ene, A. (2017). An application of levenshtein algorithm in vocabulary learning. In 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages 1–4. IEEE.
Figueira, G. L. M. (2012). Um olhar psicopedagógico sobre a dislexia. Especialização em Psicopedagogia. Universidade Cândido Mendes.
Frey, B. J. and Dueck, D. (2007). Clustering by passing messages between data points. science, 315(5814):972–976.
Gonçalves, P. and Peixoto, A. (2020). 10 perguntas e respostas para compreender a Dislexia, volume 81320. Editora Dialética e Realidade, Curitiba.
INEP (2016). Resultados da ana 2016 por estados e municípios estão disponíveis no painel educacional do inep.
International Dyslexia Association, I. (2002). Definition of dyslexia.
Jurgina, L. Q., Aquini, L. G., de Aguiar, M. S., da Rosa, L. S., Lopes, J. P., Mackedanz, T. D., Klein, A. I., Primo, T. T., and Iankowski, R. S. (2024). Neuroplasticity-based literacy rescue: A multisensory and tangible learning methodology for children at risk. In 2024 IEEE Global Engineering Education Conference (EDUCON), pages 1–10. IEEE.
Jurgina, L. Q., Aquini, L. G., Iankowski, R. S., da Rosa, L. S., de Aguiar, M. S., and Primo, T. T. (2023). Alfaba: A tangible solution to support brazilian dyslexic students in their literacy process. In 2023 IEEE Global Engineering Education Conference (EDUCON), pages 1–9. IEEE.
Li, G., Wang, Y., and Zhang, H. (2019). A deep learning approach for detecting dyslexia in children. Journal of Medical Systems, 43(8):1–9.
Liu, D. and Jiang, M. (2012). Affinity propagation clustering on oral conversation texts. In 2012 IEEE 11th International Conference on Signal Processing, volume 3, pages 2279–2282. IEEE.
Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
Ministério da Educação (2023). Estudo Internacional de Progresso em Leitura (PIRLS). Acesso em 16 de maio de 2023.
Ministério da Educação (2024). Programa criança alfabetizada. Acesso em: 14 ago. 2024.
Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research, 9(11).
Xu, M., Ao, Y., Chang, C., and Wu, Y. (2023). The application of improved k-means clustering algorithm in chinese language education in vocational colleges. In 2023 International Conference on Data Science and Network Security (ICDSNS), pages 01–06. IEEE.
Zorzi, J. L. and Ciasca, S. M. (2009). Análise de erros ortográficos em diferentes problemas de aprendizagem. Revista Cefac, 11:406–416.
Zygouris, N., Tsolaki, M., and Giakoumakis, E. (2021). Artificial intelligence in the early diagnosis of dyslexia. Frontiers in Neuroinformatics, 15:704150.
