Uma Análise de Desempenho do Wi-Fi Direct para Comunicações Veículo-Pedestre

  • Thales Teixeira de Almeida Universidade Federal do Rio de Janeiro (UFRJ)
  • José Geraldo Ribeiro Júnior Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG)
  • Miguel Elias Mitre Campista Universidade Federal do Rio de Janeiro (UFRJ)
  • Luis Henrique Maciel Kosmalski Costa Universidade Federal do Rio de Janeiro (UFRJ)

Resumo


O alto custo dos dispositivos, associado à inexistência de um padrão universal, tem freado a implantação de VANETs baseadas no IEEE 802.11p, especialmente em países de baixa ou média renda. Neste sentido, sistemas baseados no Wi-Fi Direct têm se mostrado uma alternativa, tanto pelo seu potencial em integrar pedestres e ciclistas à VANET - não factível com o 802.11p devido à exigência de hardware compatível - quanto por permitir a adoção imediata destas redes baseado na alta penetração de smartphones. Com o objetivo de investigar a capacidade do Wi-Fi Direct em oferecer conectividade no ambiente veicular, este trabalho realiza uma análise de desempenho com base nos requisitos de uma aplicação de segurança. Em cenários com comunicação V2P, com e sem linha de visada, experimentos utilizando smartphones foram realizados a fim de avaliar o alcance da comunicação, a taxa de entrega e o tempo entre recepções de pacotes. O impacto de diferentes velocidades do veículo também foi avaliado. Os resultados indicam que, apesar das limitações, o Wi-Fi Direct tem potencial para servir como alternativa ao 802.11p em aplicações V2P.

Palavras-chave: VANETs, Redes Veiculares, Wi-Fi Direct, Wi-Fi P2P, IEEE 802.11p

Referências

Bai, F., Stancil, D. D., and Krishnan, H. (2010). Toward Understanding Characteristics of Dedicated Short Range Communications (DSRC) from a Perspective of Vehicular Network Engineers. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, pages 329–340.

Balasundram, A., Samarasinghe, T., and Dias, D. (2016). Performance Analysis of Wi-Fi Direct for Vehicular Ad-hoc Networks. In 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pages 1–6. IEEE.

Camps-Mur, D., Garcia-Saavedra, A., and Serrano, P. (2013). Device-to-Device Communications with Wi-Fi Direct: Overview and Experimentation. IEEE wireless communications, 20(3):96–104.

Chaki, P., Yasuda, M., and Fujita, N. (2015). Seamless Group Reformation in WiFi Peer to Peer Network using Dormant Backend Links. In 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pages 773–778. IEEE.

Consortium, C. V. S. C. et al. (2005). Vehicle Safety Communications Project: Task 3 Final Report: Identify Intelligent Vehicle Safety Applications Enabled by DSRC. National Highway Traffic Safety Administration, US Department of Transportation, Washington DC.

Frank, R., Bronzi, W., Castignani, G., and Engel, T. (2014). Bluetooth Low Energy: An Alternative Technology for VANET Applications. In 2014 11th annual conference on wireless on-demand network systems and services (WONS), pages 104–107. IEEE.

Jeong, S., Baek, Y., and Son, S. H. (2016). A Hybrid V2X System for Safety-Critical Applications in VANET. In 2016 IEEE 4th International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), pages 13–18. IEEE.

Jeong, S., Baek, Y., and Son, S. H. (2019). Hierarchical Network Architecture for Non-Safety Applications in Urban Vehicular Ad-Hoc Networks. Sensors, 19(19):4306.

Khan, M. A., Cherif, W., Filali, F., and Hamila, R. (2017). Wi-Fi Direct Research- Current Status and Future Perspectives. Journal of Network and Computer Applications, 93:245–258.

Manamperi, W., Samarasinghe, T., and Dias, D. (2018). Enhancing the Wi-Fi Direct Protocol for Data Communication in Vehicular Ad-hoc Networks. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 812–817.

Miucic, R. and Bai, S. (2011). Performance of Aftermarket (DSRC) Antennas Inside a Passenger Vehicle. SAE Int. J. Passeng. Cars – Electron. Electr. Syst., 4:150–155.

Park, Y., Ha, J., Kuk, S., Kim, H., Liang, C.-J. M., and Ko, J. (2014). A Feasibility Study and Development Framework Design for Realizing Smartphone-based Vehicular Networking Systems. IEEE transactions on mobile computing, 13(11):2431–2444.

Renda, M. E., Resta, G., Santi, P., Martelli, F., and Franchini, A. (2016). IEEE 802.11 p VANets: Experimental Evaluation of Packet Inter-Reception Time. Computer Communications, 75:26–38.

Shahin, A. A. and Younis, M. (2015). Alert Dissemination Protocol using Service Discovery in Wi-Fi Direct. In 2015 IEEE International Conference on Communications (ICC), pages 7018–7023. IEEE.

Statista (2019). Global Smartphone Penetration Rate as Share of Population from 2016 to 2020.

Su, K.-C., Wu, H.-M., Chang, W.-L., and Chou, Y.-H. (2012). Vehicle-to-Cehicle Communication System through Wi-Fi Network using Android Smartphone. In 2012 International conference on connected vehicles and expo (ICCVE), pages 191–196. IEEE.

Sun, W., Yang, C., Jin, S., and Choi, S. (2016). Listen Channel Randomization for Faster Wi-Fi Direct Device Discovery. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pages 1–9. IEEE.

Touati, F., Tabish, R., and Mnaouer, A. B. (2013). A Real-Time BLE Enabled ECG System for Remote Monitoring. APCBEE procedia, 7:124–131.

Won, M., Shrestha, A., and Eun, Y. (2018). Enabling WiFi P2P-based Pedestrian Safety App. arXiv preprint arXiv:1805.00442.

Wong, J. Y. (2008). Theory of Ground Vehicles. John Wiley & Sons.

World Health Organization (2019). Road Traffic Injuries.

Zhang, H., Wang, Y., and Tan, C. C. (2014). WD2: An Improved WiFi-Direct Group Formation Protocol. In Proceedings of the 9th ACM MobiCom workshop on Challenged networks, pages 55–60. ACM.
Publicado
07/12/2020
DE ALMEIDA, Thales Teixeira; JÚNIOR, José Geraldo Ribeiro; CAMPISTA, Miguel Elias Mitre; COSTA, Luis Henrique Maciel Kosmalski. Uma Análise de Desempenho do Wi-Fi Direct para Comunicações Veículo-Pedestre. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 38. , 2020, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 253-266. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2020.12287.