Uso eficiente do canal em comunicações full-duplex através de uma reserva de canal inovadora

Resumo


A próxima geração (5G) de redes móveis é necessária para satisfazer os crescentes requisitos de vazão em redes cada vez mais densas. As comunicações full-duplex (FD) podem ajudar a cumprir estes requisitos, pois espera-se que elas melhorem a vazão e o uso do canal. Para melhor aproveitar o potencial de FD, as técnicas de controle de acesso ao meio (MAC) devem ser projetadas para tirar vantagem das características de FD. Porém, diversos mecanismos MAC para FD baseiam-se no padrão IEEE 802.11 que fora projetado para comunicações half-duplex. Neste contexto, o presente trabalho propõe o FDMR-MAC (Full-duplex Multiple Receiver MAC). O FDMR-MAC recorre a um mecanismo inovador de reserva de canal para possibilitar melhor uso do canal e maior vazão. O FDMR-MAC é avaliado em comparação com técnicas MAC do estado da arte por meio da extensão de um modelo matemático muito utilizado e baseado em processos estocásticos. Os resultados apontam que o FDMR-MAC supera as demais técnicas avaliadas em todos cenários considerados. A melhoria alcança até 67% em termos de vazão.

Palavras-chave: Controle de Acesso ao Meio, Comunicações Full-duplex, Reserva de Canal

Referências

Al-Kadri, M. O., Aijaz, A., and Nallanathan, A. (2016). An energy-efficient full-duplex MAC protocol for distributed wireless networks. IEEE Wireless Communications Letters, 5(1):44–47.

Amjad, M., Akhtar, F., Rehmani, M. H., Reisslein, M., and Umer, T. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials.

Garcia-Luna-Aceves, JJ (2017). Carrier-Sense Multiple Access with Collision Avoidance and Detection. In Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, pages 53–61. ACM.

Guimarães, L. D. M. and Bordim, J. L. (2018a). A Full-Duplex MAC Tailored for 5G Wireless Networks. Wireless Communications and Mobile Computing, 2018.

Guimarães, L. D. M. and Bordim, J. L. (2018b). FDDS-MAC: Enhancing spectrum usage on full-duplex communications in 5G mobile wireless networks. In IEEE Symposium on Computers and Communications (ISCC), pages 268–273. IEEE.

Guimarães, L. D. M., Bordim, J. L., and Nakano, K. (2015). Using pulse/tone signals as an alternative to boost channel reservation on directional communications. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 98(8):1647–1656.

IEEE (2007). IEEE Standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks - specific requirements - part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE Standard 802.11, Institute of Electrical and Electronics Engineers.

Liberti, J. and Rappaport, T. (1999). Smart antennas for wireless communications. Prentice Hall PTR.

Mao, G., Anderson, B. D. O., and Fidan, B. (2007). Path loss exponent estimation for wireless sensor network localization. Computer Networks, 51(10):2467–2483.

Marlali, Deniz and Gurbuz, Ozgur (2017). Design and performance analysis of a full-duplex MAC protocol for wireless local area networks. Ad Hoc Networks, 67:53–67.

Nayak, P., Garetto, M., and Knightly, E. W. (2017). Multi-user downlink with single-user uplink can starve TCP. In INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, pages 1–9. IEEE.

Sagari, S., Baysting, S., Saha, D., Seskar, I., Trappe, W., and Raychaudhuri, D. (2015). Coordinated dynamic spectrum management of LTE-U and Wi-Fi networks. In Dynamic Spectrum Access Networks (DySPAN), 2015 IEEE International Symposium on, pages 209–220. IEEE.

Sen, Souvik and Roy Choudhury, Romit and Nelakuditi, Srihari (2011). No time to countdown: Migrating backoff to the frequency domain. In Proceedings of the 17th annual international conference on Mobile computing and networking, pages 241–252. ACM.

Shih, K., Liao, W., Chen, H., and Chou, C. (2009). On avoiding RTS collisions for IEEE 802.11-based wireless ad hoc networks. Computer Communications, 32(1):69–77.

Tang, R., Zhao, J., Qu, H., and Zhang, Z. (2016). Energy-efficient resource allocation for 5G full-duplex enabled device-to-device communication. In Globecom Workshops (GC Wkshps), 2016 IEEE, pages 1–7. IEEE.

Thilina, K. M., Tabassum, H., Hossain, E., and Kim, D. I. (2015). Medium access control design for full duplex wireless systems: challenges and approaches. IEEE Communications Magazine, 53(5):112–120.

Tinnirello, I., Bianchi, G., and Xiao, Y. (2010). Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology, 59(3):1055–1067.

Yao, Y., Rao, L., and Liu, X. (2013). Performance and reliability analysis of IEEE 802.11p safety communication in a highway environment. IEEE transactions on vehicular technology, 62(9):4198–4212.

Zhang, X., Cheng, W., and Zhang, H. (2015). Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks. IEEE Wireless Communications, 22(5):112– 121.

Zhang, Z., Long, K., Vasilakos, A. V., and Hanzo, L. (2016). Full-duplex wireless communications: challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7):1369–1409.
Publicado
07/12/2020
Como Citar

Selecione um Formato
GUIMARÃES, Lucas de Melo; BORDIM, Jacir Luiz. Uso eficiente do canal em comunicações full-duplex através de uma reserva de canal inovadora. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 38. , 2020, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 393-406. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2020.12297.