Split-MAC: um protocolo assíncrono de baixa energia e latência reduzida para RSSF

  • Tales Heimfarth Universidade Federal de Lavras
  • João Carlos Giacomin Univesidade Federal de Lavras

Resumo


Redes de Sensores Sem Fio (RSSF) usam ciclos de trabalho como estratégia para economizar energia. O atraso de propagação (sleep-delay) é uma consequência negativa desse modo de operação, aumentando a latência fim-a-fim. Apresenta-se aqui o Split-MAC: um protocolo assíncrono de baixa energia e latência reduzida para RSSFs. Ele reúne funções de controle de acesso ao meio e de roteamento, e emprega estratégias para obter baixa latência: comunicação anycast, um esquema de reserva de canal para transmitir dados de maneira encadeada e transmissão simultânea de segmentos de dados. Simulações foram realizadas para comparar este protocolo com outros da literatura. O Split-MAC demonstrou superioridade frente aos outros protocolos testados, reduzindo a latência em pelo menos 30%.

Palavras-chave: Redes de Sensores Sem Fio, Protocolos MAC, Anycast

Referências

Ashraf, F., Vaidya, N., and Kravets, R. (2011). Any-mac: Extending any asynchronous mac with anycast to improve delay in wsn. In Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on, pages 19–27.

Bachir, A., Dohler, M., Watteyne, T., and Leung, K. (2010). Mac essentials for wireless sensor networks. Communications Surveys Tutorials, IEEE, 12(2):222–248.

Buettner, M., Yee, G. V., Anderson, E., and Han, R. (2006). X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th international conference on Embedded networked sensor systems, SenSys ’06, pages 307–320, New York, NY, USA. ACM.

Cano, C., Bellalta, B., Sfairopoulou, A., and Oliver, M. (2011). Low energy operation in wsns: A survey of preamble sampling mac protocols. Computer Networks, 55(15):3351–3363.

Culler, D., Estrin, D., and Srivastava, M. (2004). Guest editors’ introduction: Overview of sensor networks. Computer, 37(8):41–49.

Doudou, M., Djenouri, D., Barcelo-Ordinas, J. M., and Badache, N. (2016). Delay-efficient mac protocol with traffic differentiation and run-time parameter adaptation for energy-constrained wireless sensor networks. Wirel. Netw., 22(2):467–490.

Du, S., Saha, A., and Johnson, D. (2007). Rmac: A routing-enhanced duty-cycle mac protocol for wireless sensor networks. In INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pages 1478–1486.

Heimfarth, T., Giacomin, J., and De Araujo, J. (2015). Aga-mac: Adaptive geographic anycast mac protocol for wireless sensor networks. In Advanced Information Networking and Applications (AINA), 2015 IEEE 29th International Conference on, pages 373–381.

Heimfarth, T., Giacomin, J. C., d. Araujo, J. P., and d. Freitas, E. P. (2016). A preamble ahead anycast protocol for wsns. In 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pages 458–466.

Hong, S.-H. and ki Kim, H. (2009). A multi-hop reservation method for end-to-end latency performance improvement in asynchronous mac-based wireless sensor networks. Consumer Electronics, IEEE Transactions on, 55(3):1214–1220.

IEEE Standard (2003). Ieee standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks specific requirements part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (lr-wpans). IEEE Std 802.15.4-2003, pages 1–670.

Karp, B. and Kung, H. T. (2000). Gpsr: greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking, MobiCom ’00, pages 243–254, New York, NY, USA. ACM.

Kumar, A., Zhao, M., Wong, K., Guan, Y. L., and Chong, P. H. J. (2018). A comprehensive study of iot and wsn mac protocols: Research issues, challenges and opportunities. IEEE Access, 6:76228–76262.

Lessmann, J., Heimfarth, T., and Janacik, P. (2008). Shox: An easy to use simulation platform for wireless networks. In Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth International Conference on, pages 410–415.

Li, J., Andrew, L. L., Foh, C. H., Zukerman, M., and Chen, H.-H. (2009). Connectivity, coverage and placement in wireless sensor networks. Sensors, 9(10):7664.

Liu, S., Fan, K.-W., and Sinha, P. (2007). Cmac: An energy efficient mac layer protocol using convergent packet forwarding for wireless sensor networks. In Sensor, Mesh and Ad Hoc Communications and Networks, 2007. SECON ’07. 4th Annual IEEE Communications Society Conference on, pages 11–20.

Lu, G., Krishnamachari, B., and Raghavendra, C. (2004). An adaptive energy-efficient and low-latency mac for data gathering in wireless sensor networks. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International, pages 224– 231.

Pyeon, D., Jang, I., Yoon, H., and Kim, D. (2016). Rm-mac: a reservation based multi-channel mac protocol for wireless sensor networks. Wireless Networks, 22(8):2727– 2739.

Sun, Y., Du, S., Gurewitz, O., and Johnson, D. B. (2008). Dw-mac: a low latency, energy efficient demand-wakeup mac protocol for wireless sensor networks. In Proceedings of the 9th ACM international, pages 53–62.

Tong, F., Zhang, R., and Pan, J. (2016). One handshake can achieve more: An energy-efficient, practical pipelined data collection for duty-cycled sensor networks. IEEE Sensors Journal, 16(9):3308–3322.

Zorzi, M. and Rao, R. (2003). Geographic random forwarding (geraf) for ad hoc and sensor networks: multihop performance. Mobile Computing, IEEE Transactions on, 2(4):337–348.
Publicado
07/12/2020
Como Citar

Selecione um Formato
HEIMFARTH, Tales; GIACOMIN, João Carlos. Split-MAC: um protocolo assíncrono de baixa energia e latência reduzida para RSSF. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 38. , 2020, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 421-434. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2020.12299.