Architecture for Virtualization and Collaboration in Edge Computing: an implementation based on FIWARE building blocks

  • Marcelo Pitanga Alves Universidade Federal do Rio de Janeiro
  • Flávia Coimbra Delicato Universidade Federal Fluminense
  • Igor Leão dos Santos Centro Federal de Educação Tecnológica Celso Suckow da Fonseca
  • Paulo F. Pires Universidade Federal Fluminense


Edge Computing is a novel paradigm that allows moving the computation closer to the end-users and/or data sources. In this paper, we present a three-tier architecture for virtualization and collaboration of Virtual Nodes that leverages the Edge tier to meet those emerging IoT applications that demand requirements such as low latency, geo-localization, and energy efficiency. Besides the Edge tier, our implementation is based on the mix of lightweight virtualization and microservices using the building blocks from the FIWARE platform to interact with the physical environment. Furthermore, we presented two experiments to assess our architecture under severe and realistic conditions, regarding the network latency and fault-tolerance.

Palavras-chave: Collaboration, Data sharing, Edge Computing, Lightweight virtualization, P2P, Resource Management, FIWARE


Alves, M. P. et al. (2019) “LW-CoEdge: a lightweight virtualization model and collaboration process for edge computing”. In: World Wide Web, 1-49.

Armbrust, M. et al. (2010) “A view of cloud computing”. In: Communications of the ACM, 53(4), 50-58.

Basili, V. R. (1992) “Software modeling and measurement: the Goal/Question/Metric paradigm”.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014) “Fog computing: A platform for internet of things and analytics”. In: Big Data and Internet of Things: A Roadmap for Smart Environments (pp. 169-186). Springer International Publishing.

Cavalcante, E. et al. (2016) “On the interplay of Internet of Things and Cloud Computing: A systematic mapping study”. In: Computer Communications,89, 17-33.

FIWARE GE (2019) “Generic Enablers”. Available in: Last accessed: 07/07/2019.

Madria, S., Kumar, V., and Dalvi, R. (2014) “Sensor cloud: A cloud of virtual sensors”. In: IEEE software, 31(2), 70-77, 2014.

Morabito, R. et al. (2018) “Consolidate IoT Edge Computing with Lightweight Virtualization”. In: IEEE Network, 32(1), 102-111.

Sahni, Y. et al. (2017) “Edge Mesh: A New Paradigm to Enable Distributed Intelligence in Internet of Things”. In: IEEE Access, 5, 16441-16458.

Santos, I. L., Pirmez, L., Delicato, F. C., Khan, S. U. and Zomaya, A. Y. (2015) “Olympus: The cloud of sensors”. In: IEEE Cloud Computing, 2(2), 48-56, 2015.

Santos, I. L. et al. (2019) “Zeus: A resource allocation algorithm for the cloud of sensors”. In: Future Generation Computer Systems, 92, 564-581.

Shen, Z. et al. (2019) “ICCF: An Information-Centric Collaborative Fog Platform for Building Energy Management Systems”. In: IEEE Access.

Thönes, J. (2015) “Microservices”. In: IEEE Software 32.1: 116-116.

Wang, N. et al. (2017) “ENORM: A framework for edge node resource management”. In: IEEE Transactions on Services Computing.
Como Citar

Selecione um Formato
ALVES, Marcelo Pitanga; DELICATO, Flávia Coimbra; DOS SANTOS, Igor Leão; PIRES, Paulo F.. Architecture for Virtualization and Collaboration in Edge Computing: an implementation based on FIWARE building blocks. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 38. , 2020, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 686-699. ISSN 2177-9384. DOI:

Artigos mais lidos do(s) mesmo(s) autor(es)