Resiliência de Dados da Bruma Computacional na Internet das Coisas
Resumo
Um sistema IoT baseado em bruma (mist) e névoa computacional deve resistir a desconexões e a interrupções da névoa, já que os dados transmitidos pela bruma podem ser perdidos. Esse artigo propõe uma solução intitulada ReMITS, que persiste os dados na bruma, mesmo durante desconexões de rede. Também foi proposto um algoritmo de compressão (LoRa-SAX), para reduzir o atraso dos dados quando a conexão é retomada. O ReMITS foi avaliado com uma carga simulada de 5.000 sensores e com sete configurações, para 1, 5 e 30 minutos de desconexão. Foi observado que o ReMITS entregou todos os pacotes à névoa e que o LoRa-SAX combinado ao algoritmo bzip2 reduziu o tempo de chegada dos pacotes em até 98,5% e o tamanho dos dados em até 93,6%.
Referências
Al-Khafajiy M., Baker T., Waraich A., Al-Jumeily D. and Hussain A., (2018) "IoT-Fog Optimal Workload via Fog Offloading," 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, 2018.
Armbrust M., Stoica I., Zaharia M., Fox A., Griffith R., Joseph A. D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A. (2010) “A View of Cloud Computing”. Commun. Acm, Vol. 53, No. 4, Pp. 50–58, 2010.
Asif-Ur-Rahman, Afsana F., Mahmud M., Shamim Kaiser M., Ahmed M. R., Kaiwartya O. and James-Taylor A. (2019) “Toward a Heterogeneous Mist, Fog, and Cloud-Based Framework for the Internet of Healthcare Things”, in IEEE Internet of Things Journal.
Atlam H. F., Walters R. J., Wills G.B. (2018) “Fog Computing and the Internet of Things: A Review”. Big Data Cogn. Comput.
Atzori L., Iera A., and Morabito G. (2010) “The internet of things: A survey”. Computer Networks, 54(15):2787-2805.
Azar J., Makhoul A., Barhamgi M., Couturier R. (2019) “An energy efficient IoT data compression approach for edge machine learning”, Future Generation Computer Systems, Volume 96, 2019, Pages 168-175, ISSN 0167-739X.
Blalock D., Madden S., and Guttag J. (2018) “Sprintz: Time Series Compression for the Internet of Things”. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 93 (September 2018), 23 pages.
Castellano G., Risso F. and Loti R. (2018) “Fog Computing Over Challenged Networks: A Real Case Evaluation”, 2018 IEEE (CloudNet), Tokyo, 2018.
Chandak S., Tatwawadi K., Wen C., Wang L., Ojea J. A., Weissman T. (2020) “LFZip: Lossy Compression of Multivariate Floating-Point Time Series Data via Improved Prediction”, 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 2020.
Cho J., Xu S., Hurley P. M., Mackay M., Benjamin T., and Beaumont M. (2019) “STRAM: Measuring the Trustworthiness of Computer-Based Systems”. ACM Comput. Surv. 51, 6, Article 128, 47 pages.
Fall K. (2003). A delay-tolerant network architecture for challenged internets. (SIGCOMM '03). ACM, New York, NY, USA.
Gia T. N., Jiang M., Rahmani A., Westerlund T., Liljeberg P., and Tenhunen H. (2015) “Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction”, 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool.
Gia T. N., Qingqing L., Queralta J. P., Tenhunen H., Zou Z., Westerlund T. (2019) “Lossless Compression Techniques in Edge Computing for Mission-Critical Applications in the IoT”, 2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU), Kathmandu, Nepal, 2019, pp. 1-2.
Harchol Y., Mushtaq A., McCauley J., Panda A., Shenker S., (2018) “Cessna: Resilient edge computing”, 2018 Workshop on Mobile Edge Communications, ACM, pp. 1–6. Jeong T., Chung J., Hong J.W-K, Ha S., (2017) “Towards a distributed computing framework for fog”, in: Fog World Congress (FWC), 2017 IEEE, IEEE, pp. 1–6.
Jonathan A., Uluyol M., Chandra A., Weissman J. (2017) “Ensuring reliability in geodistributed edge cloud”, in: Resilience Week (RWS), IEEE, 2017, pp. 127–132.
Junior F. M. R., Kamienski C. A. (2021) “A Survey on Trustworthiness for the Internet IEEE Access, vol. 9, pp. 42493-42514, 2021, doi: of Things”, in 10.1109/ACCESS.2021.3066457.
Kamienski C., Soininen J.-P., Taumberger M., Dantas R., Toscano A., Salmon Cinotti T., Filev M. R., Torre Neto A. (2019) “Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture”. Sensors, 19, 276.
Kulatunga C., Shalloo L., Donnelly W., Robson E. and Ivanov S. (2017) “Opportunistic Wireless Networking for Smart Dairy Farming”, in IT Professional, vol. 19, no. 2. Linaje M., Berrocal J., Galan-Benitez A. (2019) “Mist and Edge Storage: Fair Storage Distribution in Sensor Networks”, in IEEE Access, vol. 7, pp. 123860-123876, 2019.
Luzuriaga J. E., Zennaro M., Cano J. C., Calafate C. and Manzoni P., (2017) "A disruption tolerant architecture based on MQTT for IoT applications," 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV. Mahalakshmi R. and Kannan S. (2016) “Semantic Filtering of IoT Data using Symbolic Aggregate Approximation (SAX)”, Journal of Computer Science and Applications, vol. 8, no. 1, pp. 31-39, 2016.
Moura J., Hutchison D. (2020) “Fog computing systems: State of the art, Research issues and future trends, with a focus on resilience”, Journal of Network and Computer Applications, Volume 169, 2020, 102784, ISSN 1084-8045.
Negash B., Gia T.N., Anzanpour A., Azimi I., Jiang M., Westerlund T., Rahmani A.M., Liljeberg P., Tenhunen H. (2018) Leveraging Fog Computing for Healthcare IoT. In: Rahmani A., Liljeberg P., Preden JS., Jantsch A. (eds) Fog Computing in the Internet of Things. Springer, Cham.
Preden J. S., Tammemäe K., Jantsch A., Leier M., Riid A. and Calis E. (2015) “The Benefits of Self-Awareness and Attention in Fog and Mist Computing”, in Computer. Queté B., Heideker A., Zyrianoff, I., Ottolini D., Kleinschmidt J.H., Soininen J-P., Kamienski C. (2020) “Understanding the tradeoffs of LoRaWAN for IoT-based Smart Irrigation”, 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 2020, pp. 73-77.
Routray S. K., Javali A., Sahoo A., Semunigus W., Pappa M. (2020) “Lossless Compression Techniques for Low Bandwidth IoTs”, 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 177-181.
Ribeiro Junior F., Kamienski C. (2020) “Resiliência de Dados entre a Névoa e a Nuvem na Internet das Coisas”, in Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Rio de Janeiro, 2020, pp. 85-98.
Ribeiro F. M., Prati R., Bianchi R., Kamienski C. (2020) “A Nearest Neighbors based Data Filter for Fog Computing in IoT Smart Agriculture”, 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, 2020. Shi Y., Ding G., Wang H., Roman H. E., Lu S. (2015) “The fog computing service for healthcare”. 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), Beijing, 2015, pp. 1-5.
Spiegel J., Wira P., and Hermann G. (2018) “A Comparative Experimental Study of Lossless Compression Algorithms for Enhancing Energy Efficiency in Smart Meters”, 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto.
Yousefpour A., Fung C., Nguyen T., Kadiyala K., Jalali F., Niakanlahiji A., Kong J. and Jue J. P. (2019) “All one needs to know about fog computing and related edge computing paradigms: A complete survey”, Journal of Systems Architecture.
Zyrianoff, I. D. R., Borelli F., Kamienski C. (2017) “SenSE? Sensor Simulation Environment: Uma ferramenta para geração de tráfego IoT em larga escala”. Simpósio Brasileiro de Redes e Sistemas Distribuídos (SBRC), 2017.
Zyrianoff I., Heideker A., Silva D., Kleinschmidt J., Soininen J.-P., Cinotti S.T., and Kamienski C. (2019) “Architecting and Deploying IoT Smart Applications: A Performance–Oriented Approach,” Sensors, vol. 20, no. 1, p. 84, Dec. 2019.