Solução Ciente da Área para Alocação de Recursos em Redes Ópticas Metropolitanas

  • Léia S. de Sousa UnB / UNIFESSPA
  • Lucas R. Costa UnB
  • André C. Drummond UnB

Resumo


As redes ópticas metropolitanas (MON) estão passando por grandes transformações para continuar a oferecer serviços que atendam aos requisitos das aplicações do futuro. O tráfego dessas aplicações apresenta um comportamento diferente em cada horário do dia e em cada área específica da rede. As soluções agnósticas desse contexto não consideram tal distribuição desigual de tráfego. Este trabalho apresenta uma solução de roteamento e alocação de espectro ciente da área no contexto de redes ópticas metropolitanas elásticas (MEON). Tal proposta alcança o dobro de redução do bloqueio de largura de banda na rede como um todo, e pelo menos 1% de redução nas áreas compreensivas (CA) e residenciais (RA) existentes na metro.

Referências

Ayoub, O., Karandin, O., Ibrahimi, M., Castoldi, A., Musumeci, F., and Tornatore, M. (2022). Tutorial on filterless optical networks [invited]. Journal of Optical Communications and Networking, 14(3):1–15.

Braga, A., Passos, D., and Rocha, A. (2021). Mudança no perfil de tráfego de redes brasileiras em decorrência da pandemia pelo novo coronavírus. In Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 406–419, Porto Alegre, RS, Brasil. SBC.

Costa, L. R., de Sousa, L. S., de Oliveira, F. R., da Silva, K. A., Júnior, P. J. S., and Drummond, A. C. (2016). ONS: Optical Network Simulator - WDM/EON.

Cugini, F., Porzi, C., Sambo, N., Bogoni, A., and Castoldi, P. (2016). Receiver architecture with filter for power-efficient drop&waste networks. In 2016 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3. IEEE.

de Sousa, L. S. and Drummond, A. C. (2022). Metropolitan optical networks: A survey on new architectures and future trends. arXiv preprint arXiv:2201.10709.

Hadi, M. and Agrell, E. (2019). Joint power-efficient traffic shaping and service provisioning for metro elastic optical networks. Journal of Optical Communications and Networking, 11(12):578–587.

Hadi, M., Pakravan, M. R., and Agrell, E. (2019). Dynamic resource allocation in metro elastic optical networks using lyapunov drift optimization. Journal of Optical Communications and Networking, 11(6):250–259.

Layec, P., Dupas, A., Verchère, D., Sparks, K., and Bigo, S. (2017). Will metro networks be the playground for (true) elastic optical networks? Journal of Lightwave Technology, 35(6):1260–1266.

Lord, A., Zhou, Y. R., Jensen, R., Morea, A., and Ruiz, M. (2016). Evolution from wavelength-switched to flex-grid optical networks. Elastic Optical Networks, pages 7–30.

Pavon-Marino, P., Moreno-Muro, F., Garrich, M., Quagliotti, M., Riccardi, E., Rafel, A., and Lord, A. (2020). Techno-economic impact of filterless data plane and agile control plane in the 5g optical metro. Journal of Lightwave Technology, pages 1–1.

Rottondi, C., Tornatore, M., Pattavina, A., and Gavioli, G. (2013). Routing, modulation level, and spectrum assignment in optical metro ring networks using elastic transceivers. Journal of Optical Communications and Networking, 5(4):305–315.

Routray, S. K., Javali, A., Sharma, L., Gupta, J., and Sahoo, A. (2020). The new frontiers of 800g high speed optical communications. In 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pages 821–825.

Shen, G., Zhang, Y., Zhou, X., Sheng, Y., Deng, N., Ma, Y., and Lord, A. (2018). Ultra-dense wavelength switched network: A special eon paradigm for metro optical networks. IEEE Communications Magazine, 56(2):189–195.

Streit, A., Ribeiro, M., Leão, R., and e Silva, E. S. (2021). Efeito do confinamento causado pela pandemia covid-19 nos perfis de tráfego residencial. In Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 238–251, Porto Alegre, RS, Brasil. SBC.

Thyagaturu, A. S., Mercian, A., McGarry, M. P., Reisslein, M., and Kellerer, W. (2016). Software defined optical networks (sdons): A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(4):2738–2786.

Troia, S., Cibari, A., and Alvizu, R. (2019). Dynamic network slicing based on tidal traffic patterns in metro-core optical networks. In 2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR), pages 1–7. IEEE.

Uzunidis, D., Kosmatos, E., Matrakidis, C., Stavdas, A., and Lord, A. (2018). Dufinet: architectural considerations and physical layer studies of an agile and cost-effective metropolitan area network. Journal of Lightwave Technology, 37(3):808–814.

Wang, R. and Mukherjee, B. (2014). Spectrum management in heterogeneous bandwidth optical networks. Optical Switching and Networking, 11:83–91.

Yan, B., Zhao, Y., Chen, W., and Zhang, J. (2020). Area-aware routing and spectrum allocation for the tidal traffic pattern in metro optical networks. IEEE Access, 8:56501– 56509.

Yan, B., Zhao, Y., Yu, X., Wang, W., Wu, Y., Wang, Y., and Zhang, J. (2018). Tidaltraffic-aware routing and spectrum allocation in elastic optical networks. Journal of Optical Communications and Networking, 10(11):832–842.

Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. management Science, 17(11):712–716.
Publicado
23/05/2022
SOUSA, Léia S. de; COSTA, Lucas R.; DRUMMOND, André C.. Solução Ciente da Área para Alocação de Recursos em Redes Ópticas Metropolitanas. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 40. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 363-376. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2022.222330.