FDT-MAC: Reduzindo a latência das comunicações full-duplex em redes móveis sem fio
Resumo
A crescente demanda por largura de banda impulsionou o estudo e o desenvolvimento da quinta geração (5G) de redes móveis. Espera-se que as redes 5G criem mecanismos que permitam uma melhoria no uso do espectro. Antenas full-duplex e técnicas de controle de acesso ao meio (MAC) tendem a ser fundamentais no panorama de redes 5G. Este trabalho propõe uma técnica MAC que reduz a latência da reserva de canal quando se considera o uso de antenas full-duplex. Resultados analíticos indicaram que a técnica proposta obteve ganhos de vazão de até 156% quando comparado com um protocolo do estado da arte projetado para comunicações full-duplex. Quando comparado com esquemas tradicionais half-duplex, o ganho de vazão superou 400%.
Referências
Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on selected areas in communications, 18(3):535–547.
Cheng, W., Zhang, X., and Zhang, H. (2013). RTS/FCTS mechanism based full-duplex In Globecom Workshops (GC Wkshps), 2013 MAC protocol for wireless networks. IEEE, pages 5017–5022. IEEE.
Choi, J. I., Jain, M., Srinivasan, K., Levis, P., and Katti, S. (2010). Achieving single channel, full duplex wireless communication. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, pages 1–12. ACM.
Giorgetti, G., Maddio, S., Cidronali, A., Gupta, S., and Manes, G. (2009). Switched beam antenna design principles for angle of arrival estimation. In Proceedings fo the European Wireless Technology Conference, pages 5–8, Rome, Italy. IEEE.
Guimaraes, L. D. M., Bordim, J. L., and Nakano, K. (2015). Using Pulse/Tone Signals as an Alternative to Boost Channel Reservation on Directional Communications. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 98(8):1647–1656.
IEEE (2007). IEEE Standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks specic requirements part 11: Wireless lan medium access control (mac) and physical layer (phy) specications. IEEE Standard 802.11, Institute of Electrical and Electronics Engineers.
Jun, J., Peddabachagari, P., and Sichitiu, M. (2003). Theoretical maximum throughput of IEEE 802.11 and its applications. In Proceedings of the Second IEEE International Symposium on Network Computing and Applications, pages 249–256, Cambridge, MA, USA. IEEE.
Kim, J. Y., Mashayekhi, O., Qu, H., Kazandjieva, M., and Levis, P. (2013). Janus: A novel MAC protocol for full duplex radio. Technical report, Stanford University.
Liberti, J. and Rappaport, T. (1999). Smart antennas for wireless communications. Prentice Hall PTR.
Liu, W., Nishiyama, H., Kato, N., Shimizu, Y., and Kumagai, T. (2012). A novel gateway selection method to maximize the system throughput of wireless mesh network In Personal Indoor and Mobile Radio Communications deployed in disaster areas. (PIMRC), 2012 IEEE 23rd International Symposium on, pages 771–776. IEEE.
Malajner, M., Planinsic, P., and Gleich, D. (2012). Angle of arrival estimation using RSSI and omnidirectional rotatable antennas. IEEE Sensors Journal, 12(6):1950–1957.
Mao, G., Anderson, B. D. O., and Fidan, B. (2007). Path loss exponent estimation for wireless sensor network localization. Computer Networks, 51(10):2467–2483.
Mohapatra, P. and Krishnamurthy, S. (2005). Ad Hoc Networks: technologies and protocols. Springer.
Murad, M. and Eltawil, A. M. (2017). A Simple Full-Duplex MAC Protocol Exploiting Asymmetric Trafc Loads in WiFi Systems. In Wireless Communications and Networking Conference (WCNC), 2017 IEEE, pages 1–6. IEEE.
Nayak, P., Garetto, M., and Knightly, E. W. (2017). Multi-user downlink with single-user uplink can starve TCP. In INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, pages 1–9. IEEE.
Sagari, S., Baysting, S., Saha, D., Seskar, I., Trappe, W., and Raychaudhuri, D. (2015). Coordinated dynamic spectrum management of LTE-U and Wi-Fi networks. In Dynamic Spectrum Access Networks (DySPAN), 2015 IEEE International Symposium on, pages 209–220. IEEE.
Sakano, T., Fadlullah, Z. M., Ngo, T., Nishiyama, H., Nakazawa, M., Adachi, F., Kato, N., Takahara, A., Kumagai, T., Kasahara, H., et al. (2013). Disaster-resilient networking: a new vision based on movable and deployable resource units. IEEE Network, 27(4):40– 46.
Shih, K., Liao, W., Chen, H., and Chou, C. (2009). On avoiding RTS collisions for IEEE 802.11-based wireless ad hoc networks. Computer Communications, 32(1):69–77.
Tang, R., Zhao, J., Qu, H., and Zhang, Z. (2016). Energy-efcient resource allocation for 5G full-duplex enabled device-to-device communication. In Globecom Workshops (GC Wkshps), 2016 IEEE, pages 1–7. IEEE.
Tinnirello, I., Bianchi, G., and Xiao, Y. (2010). Renements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology, 59(3):1055–1067.
Wang, H., Chen, S., Xu, H., Ai, M., and Shi, Y. (2015). SoftNet: A software dened decentralized mobile network architecture toward 5G. IEEE Network, 29(2):16–22.
Zhang, X., Cheng, W., and Zhang, H. (2015). Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks. IEEE Wireless Communications, 22(5):112– 121.
Zhang, Z., Long, K., Vasilakos, A. V., and Hanzo, L. (2016). Full-duplex wireless communications: challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7):1369–1409.