Multi-Criteria Optimized Deep Learning-based Intrusion Detection System for Detecting Cyberattacks in Automotive Ethernet Networks

  • Luigi F. Marques da Luz UFPE / CESAR
  • Paulo Freitas de Araujo-Filho UFPE / Université du Québec
  • Divanilson R. Campelo UFPE


Connected and autonomous vehicles (CAVs) are part of the Internet of Things, exposing them to cyberattacks. CAVs comprise several systems, such as advanced driver assistance systems, that require high bandwidth for critical data transmission, where automotive Ethernet plays an essential role as an enabling technology. In this paper, we propose a deep learning-based intrusion detection system for detecting replay attacks in an automotive Ethernet network. It uses a convolutional neural network architecture and a multi-criteria optimization technique. Our experimental results show a reduction of 900x in the storage size and a speedup of 1.4x in the detection time with a negligible drop in the F1-score compared to existing work.


Alkhatib, N., Ghauch, H., and Danger, J.-L. (2021). SOME/IP Intrusion Detection using Deep Learning-based Sequential Models in Automotive Ethernet Networks.

Alkhatib, N., Mushtaq, M., Ghauch, H., and Danger, J.-L. (2022). Unsupervised Network Intrusion Detection System for AVTP in Automotive Ethernet Networks.

Bandur, V., Selim, G., Pantelic, V., and Lawford, M. (2021). Making the case for centralized automotive e/e architectures. IEEE Transactions on Vehicular Technology, 70(2):1230-1245.

Bianco, S., Cadene, R., Celona, L., and Napoletano, P. (2018). Benchmark analysis of representative deep neural network architectures. IEEE Access, 6:64270-64277.

Burke, K. (2019). How does a self-driving car see? [link]. Accessed: 2022-12-30.

Carmo, P., Araujo-Filho, P., Campelo, D., Freitas, E., Filho, A. O., and Sadok, D. (2022). Machine learning-based intrusion detection system for automotive ethernet: Detecting cyber-attacks with a low-cost platform. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 196-209, Porto Alegre, RS, Brasil. SBC.

Freitas De Araujo-Filho, P., Pinheiro, A. J., Kaddoum, G., Campelo, D. R., and Soares, F. L. (2021). An Efficient Intrusion Prevention System for CAN: Hindering Cyber-attacks with a Low-cost Platform. IEEE Access, pages 1-1.

Ghosal, A. and Conti, M. (2020). Security issues and challenges in V2X : A Survey. Computer Networks, 169:107093.

Girish, S., Gupta, K., Singh, S., and Shrivastava, A. (2022). Lilnetx: Lightweight networks with extreme model compression and structured sparsification.

IEEE (2016). Ieee standard for a transport protocol for time-sensitive applications in bridged local area networks. IEEE Std 1722-2016 (Revision of IEEE Std 1722-2011), pages 1-233.

Jeong, S., Jeon, B., Chung, B., and Kim, H. K. (2021). Convolutional neural network-based intrusion detection system for AVTP streams in automotive Ethernet-based networks. Vehicular Communications, 29:100338.

Jo, H. J. and Choi, W. (2021). A Survey of Attacks on Controller Area Networks and Corresponding Countermeasures. IEEE Transactions on Intelligent Transportation Systems, pages 1-19.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., et al. (2010). Experimental security analysis of a modern automobile. In 2010 IEEE symposium on security and privacy, pages 447-462. IEEE.

Kukkala, V. K., Tunnell, J., Pasricha, S., and Bradley, T. (2018). Advanced driver-assistance systems: A path toward autonomous vehicles. IEEE Consumer Electronics Magazine, 7(5):18-25.

Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K., Karim, S. H. T., Rashidi, S., Hosseinzadeh, M., and Rahmani, A. M. (2021). Deep learning-based intrusion detection systems: A systematic review. IEEE Access, 9:101574-101599.

Liu, J., Zhang, S., Sun, W., and Shi, Y. (2017). In-vehicle network attacks and countermeasures: Challenges and future directions. IEEE Network, 31(5):50-58.

Matheus, K. and Königseder, T. (2021). Automotive ethernet. Cambridge University Press.

Miller, C. and Valasek, C. (2015). Remote Exploitation of an Unaltered Passenger Vehicle. Defcon 23, 2015:1-91.

Oktay, D., Ballé, J., Singh, S., and Shrivastava, A. (2019). Scalable model compression by entropy penalized reparameterization. arXiv preprint arXiv:1906.06624.

Seo, E., Song, H. M., and Kim, H. K. (2018). Gids: Gan based intrusion detection system for in-vehicle network. In 2018 16th Annual Conference on Privacy, Security and Trust (PST), pages 1-6.

Sun, X., Yu, F. R., and Zhang, P. (2022). A survey on cyber-security of connected and autonomous vehicles (cavs). IEEE Transactions on Intelligent Transportation Systems, 23(7):6240-6259.

Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., and Kilmartin, L. (2015). Intra-Vehicle Networks: A Review. IEEE Transactions on Intelligent Transportation Systems, 16(2):534-545.

UN Regulation (2021). Un regulation no. 155 cyber security and cyber security management system. [link].

Wu, W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., and Li, K. (2020). A survey of intrusion detection for in-vehicle networks. IEEE Transactions on Intelligent Transportation Systems, 21(3):919-933.
LUZ, Luigi F. Marques da; ARAUJO-FILHO, Paulo Freitas de; CAMPELO, Divanilson R.. Multi-Criteria Optimized Deep Learning-based Intrusion Detection System for Detecting Cyberattacks in Automotive Ethernet Networks. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 41. , 2023, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 197-210. ISSN 2177-9384. DOI: