qIDS: Sistema de Detecção de Ataques baseado em Aprendizado de Máquina Quântico Híbrido
Resumo
A ascensão da utilidade quântica no campo da computação quântica apresenta não apenas desafios, mas também oportunidades para aprimorar a segurança de redes. Esta mudança de paradigma nas capacidades computacionais permite o desenvolvimento de soluções avançadas para contrapor a rápida evolução dos ataques de rede. Aproveitando este avanço tecnológico, este trabalho apresenta o qIDS, um Sistema de Detecção de Intrusão (IDS) que integra de forma inovadora abordagens de computação quântica e clássica. O qIDS utiliza técnicas de Aprendizado de Máquina Quântico (QML) para aprender efetivamente os comportamentos da rede e identificar atividades maliciosas. Ao realizar avaliações experimentais abrangentes em conjuntos de dados públicos, evidenciou-se a competência do qIDS na detecção de ataques, destacando-se, tanto em tarefas de classificação binária quanto multiclasse. Nossos resultados revelam que o qIDS compete favoravelmente com métodos de Aprendizado de Máquina clássicos, destacando o potencial das soluções de cibersegurança aprimoradas por tecnologia quântica na era da utilidade quântica.Referências
Abelém, A., Vardoyan, G., and Towsley, D. (2020). Quantum internet: The future of internetworking. In Minicursos do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 48–90. SBC.
Ali, T. E., Chong, Y.-W., and Manickam, S. (2023). Machine learning techniques to detect a ddos attack in sdn: A systematic review. Applied Sciences, 13(5):3183.
Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., Bremner, M. J., Martinis, J. M., and Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600.
Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., and Den Hartog, F. T. (2021). Ton_iot: The role of heterogeneity and the need for standardization of features and attack types in iot network intrusion data sets. IEEE Internet of Things Journal.
Buonaiuto, G., Gargiulo, F., De Pietro, G., Esposito, M., and Pota, M. (2023). Best practices for portfolio optimization by quantum computing, experimented on real quantum devices. Nature Scientifc Reports, 13:19434.
Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., and Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science.
De Luca, G. (2022). A survey of nisq era hybrid quantum-classical machine learning research. Journal of Artificial Intelligence and Technology, 2(1):9–15.
Elkan, C. (2000). Results of the kdd’99 classifier learning. Acm Sigkdd Explorations Newsletter, 1(2):63–64.
Gong, C., Guan, W., Gani, A., and Qi, H. (2022). Network attack detection scheme based on variational quantum neural network. The Journal of Supercomputing, 78(15):16876–16897.
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., and Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209–212.
Kalinin, M. and Krundyshev, V. (2023). Security intrusion detection using quantum machine learning techniques. Journal of Computer Virology and Hacking Techniques, 19(1):125–136.
Kavitha, S. and Kaulgud, N. (2023). Quantum k-means clustering method for detecting heart disease using quantum circuit approach. Soft Computing, 27(18):13255–13268.
Kim, Y., Eddins, A., Anand, S., Wei, K. X., Van Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., et al. (2023). Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505.
Mammone, A., Turchi, M., and Cristianini, N. (2009). Support vector machines. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3):283–289.
Moustafa, N. and Slay, J. (2015). Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE.
Said, D. (2023). Quantum computing and machine learning for cybersecurity: Distributed denial of service (ddos) attack detection on smart micro-grid. Energies, 16(8):3572.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116.
Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). Developing realistic distributed denial of service (ddos) attack dataset and taxonomy. In 2019 International Carnahan Conference on Security Technology (ICCST), pages 1–8. IEEE.
Torlai, G. and Melko, R. G. (2020). Machine-learning quantum states in the nisq era. Annual Review of Condensed Matter Physics, 11:325–344.
Ali, T. E., Chong, Y.-W., and Manickam, S. (2023). Machine learning techniques to detect a ddos attack in sdn: A systematic review. Applied Sciences, 13(5):3183.
Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., Bremner, M. J., Martinis, J. M., and Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600.
Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., and Den Hartog, F. T. (2021). Ton_iot: The role of heterogeneity and the need for standardization of features and attack types in iot network intrusion data sets. IEEE Internet of Things Journal.
Buonaiuto, G., Gargiulo, F., De Pietro, G., Esposito, M., and Pota, M. (2023). Best practices for portfolio optimization by quantum computing, experimented on real quantum devices. Nature Scientifc Reports, 13:19434.
Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., and Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science.
De Luca, G. (2022). A survey of nisq era hybrid quantum-classical machine learning research. Journal of Artificial Intelligence and Technology, 2(1):9–15.
Elkan, C. (2000). Results of the kdd’99 classifier learning. Acm Sigkdd Explorations Newsletter, 1(2):63–64.
Gong, C., Guan, W., Gani, A., and Qi, H. (2022). Network attack detection scheme based on variational quantum neural network. The Journal of Supercomputing, 78(15):16876–16897.
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., and Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209–212.
Kalinin, M. and Krundyshev, V. (2023). Security intrusion detection using quantum machine learning techniques. Journal of Computer Virology and Hacking Techniques, 19(1):125–136.
Kavitha, S. and Kaulgud, N. (2023). Quantum k-means clustering method for detecting heart disease using quantum circuit approach. Soft Computing, 27(18):13255–13268.
Kim, Y., Eddins, A., Anand, S., Wei, K. X., Van Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., et al. (2023). Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505.
Mammone, A., Turchi, M., and Cristianini, N. (2009). Support vector machines. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3):283–289.
Moustafa, N. and Slay, J. (2015). Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE.
Said, D. (2023). Quantum computing and machine learning for cybersecurity: Distributed denial of service (ddos) attack detection on smart micro-grid. Energies, 16(8):3572.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116.
Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). Developing realistic distributed denial of service (ddos) attack dataset and taxonomy. In 2019 International Carnahan Conference on Security Technology (ICCST), pages 1–8. IEEE.
Torlai, G. and Melko, R. G. (2020). Machine-learning quantum states in the nisq era. Annual Review of Condensed Matter Physics, 11:325–344.
Publicado
20/05/2024
Como Citar
ABREU, Diego; ROTHENBERG, Christian R. Esteve; ABELÉM, Antônio.
qIDS: Sistema de Detecção de Ataques baseado em Aprendizado de Máquina Quântico Híbrido. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 295-308.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1353.