qIDS: Hybrid Quantum Machine Learning-Based Attack Detection System

  • Diego Abreu UFPA
  • Christian R. Esteve Rothenberg UNICAMP
  • Antônio Abelém UFPA

Abstract


The rise of quantum utility in the realm of quantum computing presents not just challenges but also significant opportunities for enhancing network security. This paradigm shift in computational capabilities allows for the development of advanced solutions to counteract the rapidly evolving nature of network attacks. Capitalizing on this technological advancement, this work introduces qIDS, an Intrusion Detection System (IDS) that innovatively integrates quantum and classical computing approaches. qIDS leverages Quantum Machine Learning (QML) techniques to effectively learn network behaviors and identify malicious activities. By conducting comprehensive experimental evaluations on public datasets, we demonstrate the proficiency of qIDS in attack detection, excelling in both binary and multiclass classification tasks. Our findings reveal that qIDS competes favorably with classical Machine Learning methods, highlighting the potential of quantum-enhanced cybersecurity solutions in the era of quantum utility.

References

Abelém, A., Vardoyan, G., and Towsley, D. (2020). Quantum internet: The future of internetworking. In Minicursos do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 48–90. SBC.

Ali, T. E., Chong, Y.-W., and Manickam, S. (2023). Machine learning techniques to detect a ddos attack in sdn: A systematic review. Applied Sciences, 13(5):3183.

Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., Bremner, M. J., Martinis, J. M., and Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600.

Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., and Den Hartog, F. T. (2021). Ton_iot: The role of heterogeneity and the need for standardization of features and attack types in iot network intrusion data sets. IEEE Internet of Things Journal.

Buonaiuto, G., Gargiulo, F., De Pietro, G., Esposito, M., and Pota, M. (2023). Best practices for portfolio optimization by quantum computing, experimented on real quantum devices. Nature Scientifc Reports, 13:19434.

Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., and Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science.

De Luca, G. (2022). A survey of nisq era hybrid quantum-classical machine learning research. Journal of Artificial Intelligence and Technology, 2(1):9–15.

Elkan, C. (2000). Results of the kdd’99 classifier learning. Acm Sigkdd Explorations Newsletter, 1(2):63–64.

Gong, C., Guan, W., Gani, A., and Qi, H. (2022). Network attack detection scheme based on variational quantum neural network. The Journal of Supercomputing, 78(15):16876–16897.

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., and Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209–212.

Kalinin, M. and Krundyshev, V. (2023). Security intrusion detection using quantum machine learning techniques. Journal of Computer Virology and Hacking Techniques, 19(1):125–136.

Kavitha, S. and Kaulgud, N. (2023). Quantum k-means clustering method for detecting heart disease using quantum circuit approach. Soft Computing, 27(18):13255–13268.

Kim, Y., Eddins, A., Anand, S., Wei, K. X., Van Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., et al. (2023). Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505.

Mammone, A., Turchi, M., and Cristianini, N. (2009). Support vector machines. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3):283–289.

Moustafa, N. and Slay, J. (2015). Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE.

Said, D. (2023). Quantum computing and machine learning for cybersecurity: Distributed denial of service (ddos) attack detection on smart micro-grid. Energies, 16(8):3572.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116.

Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). Developing realistic distributed denial of service (ddos) attack dataset and taxonomy. In 2019 International Carnahan Conference on Security Technology (ICCST), pages 1–8. IEEE.

Torlai, G. and Melko, R. G. (2020). Machine-learning quantum states in the nisq era. Annual Review of Condensed Matter Physics, 11:325–344.
Published
2024-05-20
ABREU, Diego; ROTHENBERG, Christian R. Esteve; ABELÉM, Antônio. qIDS: Hybrid Quantum Machine Learning-Based Attack Detection System. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 295-308. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1353.

Most read articles by the same author(s)

1 2 3 4 5 > >>