Uma Arquitetura para Roteamento Dinâmico de Vídeos por Multicaminhos em IoT

  • D. Oliveira UFF
  • F. Bhering CEFET-MG
  • K. Obraczka UCSC
  • D. Passos UFF / ISEL
  • C. Albuquerque UFF

Resumo


As aplicações de vídeo na Internet das Coisas beneficiam-se de estratégias de roteamento por multicaminhos para suprir os requisitos de Qualidade de Serviço. Apesar de vários mecanismos de seleção de multicaminhos terem sido propostos, as mudanças na topologia e/ou nos requisitos dos serviços de vídeo podem impactar a qualidade do vídeo. Este trabalho apresenta uma arquitetura de rede sem fio que possibilita o roteamento dinâmico, visando adaptar tais mudanças às novas soluções de caminhos que propiciem melhor Qualidade de Experiência ao usuário. Os resultados das simulações demonstraram que a arquitetura proposta é capaz de recuperar a qualidade do vídeo em caso de degradação pela mudança da topologia, bem como também constatam que a presença dos fluxos de controle, imprescindível à manutenção da topologia, reduz a qualidade final dos vídeos.

Referências

Afzal, S., Testoni, V., Rothenberg, C. E., Kolan, P., and Bouazizi, I. (2023). A holistic survey of multipath wireless video streaming. Journal of Network and Computer Applications, 212:103581.

Bhering, F., Passos, D., Albuquerque, C., and Obraczka, K. (2022a). Efficient multipath selection for iot video transmission. In 2022 IEEE 11th International Conference on Cloud Networking (CloudNet), pages 73–78. IEEE.

Bhering, F., Passos, D., Obraczka, K., and Albuquerque, C. (2022b). Network performance estimator with applications to route selection for iot multimedia applications. SIMULATION, page 00375497231156618.

Bhering, F., Passos, D., Ochi, L. S., Obraczka, K., and Albuquerque, C. (2022c). Wireless multipath video transmission: when iot video applications meet networking—a survey. Multimedia Systems, 28(3):831–850.

Clausen, T. and Jacquet, P. (2003). Optimized link state routing protocol (olsr). Technical report.

Dawood, M. S., Benazer, S. S., Karthick, R., Ganesh, R. S., and Mary, S. S. (2021). Performance analysis of efficient video transmission using evalsvc, evalvid-nt, evalvid. Materials Today: Proceedings, 46:3848–3850.

De Couto, D. S., Aguayo, D., Bicket, J., and Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of the 9th annual international conference on Mobile computing and networking, pages 134–146.

Hasan, M. Z., Al-Rizzo, H., and Al-Turjman, F. (2017). A survey on multipath routing protocols for qos assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials, 19(3):1424–1456.

Karaadi, A., Sun, L., and Mkwawa, I.-H. (2017). Multimedia communications in internet of things qot or qoe? In 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 23–29. IEEE.

Lee, Y.-C., Kim, J., Altunbasak, Y., and Mersereau, R. M. (2003). Performance comparisons of layered and multiple description coded video streaming over error-prone networks. In IEEE International Conference on Communications, 2003. ICC’03., volume 1, pages 35–39. IEEE.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2019). Iterated local search: Framework and applications. Handbook of metaheuristics, pages 129–168.

Myagmar-Ochir, Y. and Kim, W. (2023). A survey of video surveillance systems in smart city. Electronics, 12(17):3567.

Orosz, P., Skopkó, T., Nagy, Z., Varga, P., and Gyimóthi, L. (2014). A case study on correlating video qos and qoe. In 2014 IEEE Network Operations and Management Symposium (NOMS), pages 1–5. IEEE.

Quang, P. T. A., Piamrat, K., Singh, K. D., and Viho, C. (2016). Video streaming over ad hoc networks: A qoe-based optimal routing solution. IEEE Transactions on Vehicular Technology, 66(2):1533–1546.

Riley, G. F. and Henderson, T. R. (2010). The ns-3 network simulator. In Modeling and tools for network simulation, pages 15–34. Springer.

Seeling, P. and Reisslein, M. (2011). Video transport evaluation with h. 264 video traces. IEEE Communications Surveys & Tutorials, 14(4):1142–1165.

Stoffers, M. and Riley, G. (2012). Comparing the ns-3 propagation models. In 2012 IEEE 20th international symposium on modeling, analysis and simulation of computer and telecommunication systems, pages 61–67. IEEE.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612.

Xia, W., Wen, Y., Foh, C. H., Niyato, D., and Xie, H. (2014). A survey on software-defined networking. IEEE Communications Surveys & Tutorials, 17(1):27–51.

Yen, J. Y. (1970). An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Quarterly of applied mathematics, 27(4):526–530.
Publicado
20/05/2024
OLIVEIRA, D.; BHERING, F.; OBRACZKA, K.; PASSOS, D.; ALBUQUERQUE, C.. Uma Arquitetura para Roteamento Dinâmico de Vídeos por Multicaminhos em IoT. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 545-558. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1441.