Detecção de pessoas e dispositivos utilizando Channel State Information: IDS com features de camada física

  • Eduardo Fabrício Gomes Trindade ITA
  • Felipe Silveira de Almeida ITA
  • Lourenço Alves Pereira Junior ITA

Resumo


Sistemas de Detecção de Intrusão em Redes (NIDS) têm sido amplamente desenvolvidos ao longo do tempo. No entanto, ataques sofisticados têm demandado camadas de proteção adicionais. Assim, este estudo propõe utilizar dados do Channel State Information (CSI) Wi-Fi com técnicas de aprendizado de máquina para detecção nas camadas física e de enlace, visando identificar tentativas de acesso não autorizado a uma rede Wi-Fi. O estudo analisa 70.513 instâncias coletadas em dois ambientes e identifica atividades consideradas maliciosas com 94,24% de precisão, utilizando o algoritmo RandomForest. Destaca-se como uma abordagem inovadora, explorando CSI e incorporando características das camadas 1 e 2 no contexto de NIDS.

Referências

Adib, F. and Katabi, D. (2013). See through walls with wifi! SIGCOMM Comput. Commun. Rev., 43(4):7586.

Cominelli, M., Gringoli, F., and Restuccia, F. (2023). Exposing the csi: A systematic investigation of csi-based wi-fi sensing capabilities and limitations. In 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom), pages 81–90.

Galdino, I., Soto, J. C. H., Caballero, E., Ferreira, V., Ramos, T. C., Albuquerque, C., and Muchaluat-Saade, D. C. (2023). ehealth csi: A wi-fi csi dataset of human activities. IEEE Access, 11:71003–71012.

Gao, D., Lin, H., Li, Z., Qian, F., Chen, Q. A., Qian, Z., Liu, W., Gong, L., and Liu, Y. (2021). A nationwide census on wifi security threats: Prevalence, riskiness, and the economics. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, MobiCom ’21, page 242255, New York, NY, USA. Association for Computing Machinery.

Gu, Y., Chen, J., He, K., Wu, C., Zhao, Z., and Du, R. (2023). Wifileaks: Exposing stationary human presence through a wall with commodity mobile devices. IEEE Transactions on Mobile Computing, pages 1–15.

Liu, Y., Wang, J., Li, J., Niu, S., and Song, H. (2022). Machine learning for the detection and identification of internet of things devices: A survey. IEEE Internet of Things Journal, 9(1):298–320.

Lv, J., Man, D., Yang, W., Du, X., and Yu, M. (2018). Robust wlan-based indoor intrusion detection using phy layer information. IEEE Access, 6:30117–30127.

Ma, Y., Zhou, G., and Wang, S. (2019). Wifi sensing with channel state information: A survey. ACM Comput. Surv., 52(3).

Prakash, J. and Ahmed, C. M. (2017). Can you see me on performance of wireless fingerprinting in a cyber physical system. In 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), pages 163–170.

Satam, P. and Hariri, S. (2021). Wids: An anomaly based intrusion detection system for wi-fi (ieee 802.11) protocol. IEEE Transactions on Network and Service Management, 18(1):1077–1091.

Soto, J. C. H., Galdino, I., Caballero, E., Muchaluat-Saade, D., and Albuquerque, C. (2023). Single person identification using wi-fi signals. In 2023 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.

Steinmetzer, D., Yuan, Y., and Hollick, M. (2018). Beam-stealing: Intercepting the sector sweep to launch man-in-the-middle attacks on wireless ieee 802.11ad networks. In Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, WiSec ’18, page 1222, New York, NY, USA. Association for Computing Machinery.

Wang, D., Yang, J., Cui, W., Xie, L., and Sun, S. (2022). Caution: A robust wifi-based human authentication system via few-shot open-set recognition. IEEE Internet of Things Journal, 9(18):17323–17333.

Wang, S., Li, B., Yang, M., and Yan, Z. (2019). Intrusion detection for wifi network: A deep learning approach. In International Wireless Internet Conference, pages 95–104. Springer.

Wu, D., Zhang, D., Xu, C., Wang, H., and Li, X. (2017). Device-free wifi human sensing: From pattern-based to model-based approaches. IEEE Communications Magazine, 55(10):91–97.

Yang, Z., Zhang, Y., Chi, G., and Zhang, G. (2022). Hands-on wireless sensing with wi-fi: A tutorial.

Zhang, Y., Zheng, Y., Zhang, G., Qian, K., Qian, C., and Yang, Z. (2020). Gaitid: Robust wi-fi based gait recognition. In Wireless Algorithms, Systems, and Applications: 15th International Conference, WASA 2020, Qingdao, China, September 13–15, 2020, Proceedings, Part I 15, pages 730–742. Springer.
Publicado
20/05/2024
TRINDADE, Eduardo Fabrício Gomes; ALMEIDA, Felipe Silveira de; PEREIRA JUNIOR, Lourenço Alves. Detecção de pessoas e dispositivos utilizando Channel State Information: IDS com features de camada física. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 1064-1077. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1544.

Artigos mais lidos do(s) mesmo(s) autor(es)