Mecanismo Dinâmico para a Detecção de Anomalias em Rede Baseado no Fator de Outlier Local e MUD
Resumo
Presenciamos diariamente a ocorrência de ataques ao ciberespaço cada vez mais sofisticados e de difícil identificação. Os ataques de negação de serviço distribuído (DDoS) possuem como característica a capacidade de tornar indisponível um sistema por meio da interrupção de serviços a usuários legítimos. Este artigo apresenta um mecanismo dinâmico para detecção de anomalias na rede com base na descrição de uso do fabricante (MUD) associado ao algoritmo de aprendizagem de máquina LOF (fator de outlier local). Fundamentado na teoria dos sinais de alerta precoce (EWS), os resultados indicam que o mecanismo consegue predizer e detectar tráfego anômalo na rede com precisão e especificidade acima de 90%.
Referências
Dunbar, L., Lear, E., Droms, R., and Romascanu, D. (2019). Manufacturer usage description specification. RFC 8520, RFC Editor.
Gonçalves, D., Kfouri, G., Dutra, B., Alencastro, J., Filho, F., Martins, L., Albuquerque, R., and de Sousa Junior, R. (2019). Arquitetura de IPS para redes IoT sobrepostas em SDN. In Anais do XIX SBSeg, pages 309–322.
Griffioen, H. and Doerr, C. (2020). Examining mirai’s battle over the internet of things. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 743–756.
Jia, Y., Zhong, F., Alrawais, A., Gong, B., and Cheng, X. (2020). FlowGuard: An intelligent edge defense mechanism against IoT DDoS attacks. IEEE Internet of Things Journal, 7(10):9552–9562.
Kang, H., Ahn, D. H., Lee, G. M., Yoo, J. D., Park, K. H., and Kim, H. K. (2019). IoT network intrusion dataset. DOI: 10.21227/q70p-q449.
Maciel, R. d. S. (2018). Avaliação do impacto de ataques ddos e malware: uma abordagem baseada em árvore de ataque. Master’s thesis, Universidade Federal de Pernambuco.
Mazhar, N., Salleh, R., Zeeshan, M., Hameed, M. M., and Khan, N. (2021). R-IDPS: Real time SDN based IDPS system for IoT security. In IEEE HONET 2021, pages 71–76.
Mirdula and Roopa (2023). MUD enabled deep learning framework for anomaly detection in IoT integrated smart building. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 5:100186.
Morgese Zangrandi, L., van Ede, T., Booij, T., Sciancalepore, S., Allodi, L., and Continella, A. (2022). Stepping out of the MUD: Contextual thr information for IoT devices with manufacturer-provided behavior profiles. In Proceedings of ACSAC ’22. ACM.
Pelloso, M., Vergütz, A., Santos, A., and Nogueira, M. (2018). Um sistema autoadaptável para predição de ataques DDoS fundado na teoria da metaestabilidade. In Anais do XXXVI SBRC, pages 726–739, Porto Alegre, RS, Brasil. SBC.
Sapienza, A., Bessi, A., Damodaran, S., Shakarian, P., Lerman, K., and Ferrara, E. (2017). Early warnings of cyber threats in online discussions. In 2017 Annual Computer Security Applications Conference (ICDMW), pages 667–674.
Tang, M., Alazab, M., Luo, Y., and Donlon, M. (2018). Disclosure of cyber security vulnerabilities: time series modelling. International Journal of Electronic Security and Digital Forensics, 10(3):255–275.
Woolf, N. (2016). DDoS attack that disrupted internet was largest of its kind in history, experts say. The Guardian, 26.
Yan, X. and Zhang, J. Y. (2013). Early detection of cyber security threats using structured behavior modeling. ACM Transactions on Information and System Security, 5(10).
Zangrandi, L., van Ede, T., Booij, T., Sciancalepore, S., Allodi, L., and Continella, A. (2022). MUDscope dataset. DOI: 10.5281/zenodo.7182597.