Um Algoritmo para Dimensionamento e Distribuição de BVTs em Redes Ópticas Elásticas

  • Iallen G. S. Santos UFPE / IFPI
  • André Soares UFPI
  • José A. Suruagy Monteiro UFPE

Resumo


O problema de dimensionamento e distribuição de Bandwidth Variable Transponders (BVTs) em Elastic Optical Networks (EONs) consiste em determinar a quantidade BVTs a ser implantado e a distribuição dos BVTs nos nós da rede. A literatura dispõe de diversas propostas de algoritmos para alocação de recursos. Entretanto, a maioria dos trabalhos determina o número de BVTs de maneira empírica e considera a mesma quantidade de BVTs em cada nó da rede. Neste trabalho é proposto o algoritmo Fitting the Number of BVTs by Node based on Average Utilization (FNBN) para dimensionamento e distribuição de BVTs. O FNBN reduziu a quantidade de BVTs necessários. Além disso, a distribuição de BVTs mais eficiente reduziu a ocorrência de BVTs em standby e o consumo energético.

Referências

Beyranvand, H. and Salehi, J. A. (2013). A quality-of-transmission aware dynamic routing and spectrum assignment scheme for future elastic optical networks. Journal of Lightwave Technology, 31(18):3043–3054.

Chatterjee, B., Sarma, N., and Oki, E. (2015). Routing and spectrum allocation in elastic optical networks: A tutorial. IEEE Communications Surveys Tutorials, 17(3).

Fan, Z., Qiu, Y., and Chan, C. (2015). Dynamic multipath routing with trafc grooming in ofdm-based elastic optical path networks. Journal of Lightwave Technology, 33(1):275–281.

Fontinele, A., Santos, I., Neto, J. N., Campelo, D. R., and Soares, A. (2017). An efcient ia-rmlsa algorithm for transparent elastic optical networks. Computer Networks, 118:1 – 14.

Habibi, M. and Beyranvand, H. (2019). Impairment-aware manycast routing, modulation level, and spectrum assignment in elastic optical networks. IEEE/OSA Journal of Optical Communications and Networking, 11(5):179–189.

Ju, M., Zhou, F., Xiao, S., and Zhu, Z. (2016). Power-efcient protection with directedpcycles for asymmetric trafc in elastic optical networks. Journal of Lightwave Technology, 34(17):4053–4065.

Khodashenas, S., Comellas, J., Spadaro, S., and Perelló, J. (2013). Dynamic source aggregation of subwavelength connections in elastic optical networks. Photonic Network Communications, 26(2-3):131–139.

Lee, K. and Kim, Y. (2019). Dynamic spectrum assignment algorithm based on fuzzy logic to reduce fragmentation in eons. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), pages 662–666.

Majumdar, P., Pal, A., and De, T. (2016). Extending light-trail into elastic optical networks for dynamic trafc grooming. Optical Switching and Networking, 20:1 – 15.

Mina, S., Akbar, and Alizadeh, B. (2020). Load balancing, multipath routing and adaptive modulation with trafc grooming in elastic optical networks. Computer Networks, 169:107081.

Patel, B., Ji, H., Nayak, S., Ding, T., Pan, Y., and Aibin, M. (2020). On efcient canIn 2020 11th didate path selection for dynamic routing in elastic optical networks. IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), pages 0889–0894.

Saradhi, C. V. and Subramaniam, S. (2009). Physical layer impairment aware routing (PLIAR) in WDM optical networks: Issues and challenges. Commun. Surveys Tuts., 11(4):109–130.

Tang, F., Li, Y., Shen, G., and Rouskas, G. N. (2020). Minimizing inter-core crosstalk jointly in spatial, frequency, and time domains for scheduled lightpath demands in multi-core ber-based elastic optical network. Journal of Lightwave Technology, 38(20):5595–5607.

U.S. Census (2020). United States Census Bureau. https://www.census.gov/. acessado em 14/04/2021.

Vizcaíno, J. L., Ye, Y., López, V., Jiménez, F., Musumeci, F., Tornatore, M., Pattavina, A., and Krummrich, P. M. (2014). Protection in optical transport networks with xed and exible grid: Cost and energy efciency evaluation. Optical Switching and Networking, 11:55 – 71.

Wang, R. and Mukherjee, B. (2014). Spectrum management in heterogeneous bandwidth optical networks. Optical Switching and Networking, 11:83–91.

Wang, Y., Cao, X., Hu, Q., and Pan, Y. (2012). Towards elastic and ne-granular bandwidth allocation in spectrum-sliced optical networks. Optical Communications and Networking, IEEE/OSA Journal of, 4(11):906–917.

Yan, L., Agrell, E., Wymeersch, H., Johannisson, P., Di Taranto, R., and Brandt-Pearce, M. (2015). Link-level resource allocation for exible-grid nonlinear ber-optic communication systems. IEEE Photonics Technology Letters, 27(12):1250–1253.

Zhang, J., Ji, Y., Song, M., Zhao, Y., Yu, X., Zhang, J., and Mukherjee, B. (2015). Dynamic trafc grooming in sliceable bandwidth-variable transponder-enabled elastic optical networks. Journal of Lightwave Technology, 33(1):183–191.

Zhang, S., Martel, C., and Mukherjee, B. (2013). Dynamic trafc grooming in elastic optical networks. IEEE Journal on Selected Areas in Communications, 31(1):4–12.

Zhang, S., Zhu, M., Sun, Q., Li, G., and Chen, B. (2018). Effective utilization of transponder in elastic CD-ROADM optical networks with trafc grooming. In 2018 Asia Communications and Photonics Conference (ACP), pages 1–3.

Zhao, J., Wymeersch, H., and Agrell, E. (2015). Nonlinear impairment-aware static Journal of Lightwave Technology, resource allocation in elastic optical networks. 33(22):4554–4564.
Publicado
16/08/2021
Como Citar

Selecione um Formato
SANTOS, Iallen G. S.; SOARES, André; MONTEIRO, José A. Suruagy. Um Algoritmo para Dimensionamento e Distribuição de BVTs em Redes Ópticas Elásticas. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 39. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 672-685. ISSN 2177-9384.

Artigos mais lidos do(s) mesmo(s) autor(es)