Infraestrutura Óptica para Comunicação Quântica: Planejamento e Otimização
Resumo
Este artigo propõe um modelo de otimização para Infraestruturas de Comunicação Quântica (QCI), visando minimizar os custos de capital (CAPEX) associados a links quânticos e nós repetidores confiáveis. Utilizando Programação Linear Inteira (ILP), o modelo otimiza a alocação de recursos sob restrições físicas e operacionais. Simulações realizadas no ambiente AMPL/CPLEX demonstram reduções significativas no CAPEX com o aumento da disponibilidade de comprimentos de onda, alcançando uma relação custo-eficiência ótima ou próxima da ótima. Os resultados validam a aplicabilidade do modelo para a implantação em redes de média escala e eficiência de QCIs em cenários práticos.
Referências
AI, G. Q., and Collaborators (2023). Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614(7949):676–681.
Bennett, C. H. and Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560:7–11.
Boixo, S., Rønnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M., and Troyer, M. (2014). Evidence for quantum annealing with more than one hundred qubits. Nature Physics, 10(3):218–224.
Cao, Y., Zhao, Y., Wang, J., Yu, X., Ma, Z., and Zhang, J. (2019). Cost-efficient quantum key distribution (QKD) over WDM networks. Journal of Optical Communications and Networking, 11(6):285–298.
Fedorov, A. K., Gisin, N., Beloussov, S. M., and Lvovsky, A. I. (2022). Quantum computing at the quantum advantage threshold: A down-to-business review. arXiv preprint arXiv:2203.17181.
Geng, J.-Q., Fan-Yuan, G.-J., Wang, S., Zhang, Q.-F., Hu, Y.-Y., Chen, W., Yin, Z. Q., He, D.-Y., Guo, G.-C., and Han, Z.-F. (2021). Coexistence of quantum key distribution and optical transport network based on standard single-mode fiber at high launch power. Optics Letters, 46(11):2573–2576.
Gunkel, M., Wissel, F., and Poppe, A. (2019). Designing a quantum key distribution network - methodology and challenges. In Photonic Networks; 20th ITG-Symposium, pages 1–3. VDE.
IBM (2023). IBM ILOG CPLEX Optimization Studio. IBM Corporation.
Kong, W., Sun, Y., Gao, Y., and Ji, Y.-F. (2023). Coexistence of quantum key distribution and optical communication with amplifiers over multicore fiber. Nanophotonics, 12:1979–1994.
Le, L. and Nguyen, T. N. (2022). DQRA: Deep quantum routing agent for entanglement routing in quantum networks. IEEE Transactions on Quantum Engineering, 3:1–12.
Lin, R. and Chen, J. (2021). Modeling and minimizing spontaneous Raman scattering for QKD secured DWDM networks. IEEE Communications Letters, 25(12):3918–3921.
Maity, I., ur Rehman, J., and Chatzinotas, S. (2024). TAQNET: Traffic-aware minimum-cost quantum communication network planning. IEEE Transactions on Quantum Engineering.
Neven, H. (2025). Meet willow, our state-of-the-art quantum chip: [link]. Acessado em: 20 jan. 2025.
Patel, K. A., Dynes, J. F., Choi, I., Sharpe, A. W., Dixon, A. R., Yuan, Z. L., Penty, R. V., and Shields, A. J. (2012). Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Physical Review X, 2:041010.
Patri, S. K., Wenning, M., Gonde, S. H., Autenrieth, A., Elbers, J.-P., and Mas-Machuca, C. (2023). Trusted node deployment strategies for long-haul quantum key distribution networks. In International Conference on Optical Network Design and Modeling (ONDM), pages 1–6.
Pokharel, B. and Lidar, D. A. (2023). Demonstration of algorithmic quantum speedup. Physical Review Letters, 130(21):210602.
Ramaswami, R., Sivarajan, K., and Sasaki, G. (2009). Optical networks: A practical perspective. Morgan Kaufmann.
Wenning, M., Samonaki, M., Patri, S. K., Fehenberger, T., and Mas-Machuca, C. (2023). Multi-layer optimization for QKD and key management networks. Journal of Optical Communications and Networking, 15(11):938–947.
Zhang, Q., Ayoub, O., Gatto, A., Wu, J., Lin, X., Musumeci, F., Verticale, G., and Tornatore, M. (2022). Joint routing, channel, and key-rate assignment for resource-efficient QKD networking. In IEEE Global Communications Conference (GLOBECOM), pages 3676–3681.