Towards Energy-Aware LoRaWAN ADR for Mobile Scenarios Through Dynamic Margin Control

Resumo


In LoRaWAN networks, the ADR mechanism plays an essential role in dynamically adjusting the data rate to optimize energy consumption and network efficiency. However, since it is not suitable for mobile environments, alternative solutions such as MB-ADR have been proposed. This study enhances the MB-ADR scheme by dynamically adjusting the ADR margin db value based on SNR variability. Simulations with up to 1,000 mobile nodes demonstrate a 52.5% improvement in energy efficiency and a 42.18% reduction in latency while preserving packet delivery ratios similar to those of the fixed-margin MB-ADR. The proposed approach outperforms standard ADR in high-mobility scenarios, demonstrating its potential to enhance IoT network performance.

Palavras-chave: ADR, Dynamic, Internet of Things, LoRaWAN, Mobility

Referências

Al-Gumaei, Y. A., Aslam, N., Aljaidi, M., Al-Saman, A., Alsarhan, A., and Ashyap, A. Y. (2022). A novel approach to improve the adaptive-data-rate scheme for IoT LoRaWAN. Electronics, 11(21).

Benkahla, N., Tounsi, H., Song, Y.-Q., and Frikha, M. (2021). VHMM-based E-ADR for LoRaWAN networks with unknown mobility patterns. In 2021 International Wireless Communications and Mobile Computing (IWCMC), pages 86–91.

Bonilla, V., Campoverde, B., and Yoo, S. G. (2023). A systematic literature review of LoRaWAN: Sensors and applications. Sensors, 23(20).

de Jesus, G. G. M., Souza, R. D., Montez, C., and Hoeller, A. (2021). LoRaWAN adaptive data rate with flexible link margin. IEEE Internet of Things Journal, 8(7), 6053–6061.

Duan, B., Li, C., Xie, J., Wu, W., and Zhou, D. (2021). Fast handover algorithm based on location and weight in 5G-R wireless communications for high-speed railways. Sensors, 21(9).

Durand, A., El Rachkidy, N., and Guitton, A. (2023). MADERE: Mobile adaptive data rate for LoRaWAN. In 2023 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6.

Farhad, A., Kwon, G.-R., and Pyun, J.-Y. (2023). Mobility adaptive data rate based on Kalman filter for LoRa-empowered IoT applications. In 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), pages 321–324.

Janssen, T., Koppert, A., Berkvens, R., and Weyn, M. (2023). A survey on IoT positioning leveraging LPWAN, GNSS, and LEO-PNT. IEEE Internet of Things Journal, 10(13), 11135–11159.

Jiang, Y., Wang, M., and Wang, X. (2023). An efficient adaptive data rate algorithm in LoRaWAN networks: K-ADR. In 2023 24th Asia-Pacific Network Operations and Management Symposium (APNOMS), pages 183–188.

Kufakunesu, R., Hancke, G., and Abu-Mahfouz, A. (2022). A fuzzy-logic based adaptive data rate scheme for energy-efficient LoRaWAN communication. Journal of Sensor and Actuator Networks, 11, 65.

Kufakunesu, R., Hancke, G. P., and Abu-Mahfouz, A. M. (2020). A survey on adaptive data rate optimization in LoRaWAN: Recent solutions and major challenges. Sensors, 20(18).

Moysiadis, V., Lagkas, T., Argyriou, V., Sarigiannidis, A., Moscholios, I. D., and Sarigiannidis, P. (2021). Extending ADR mechanism for LoRa enabled mobile end-devices. Simulation Modelling Practice and Theory, 113, 102388.

Ouermi, T. A. J., Li, J., Athawale, T. M., and Johnson, C. R. (2024). Estimation and visualization of isosurface uncertainty from linear and high-order interpolation methods. In 2024 IEEE Workshop on Uncertainty Visualization: Applications, Techniques, Software, and Decision Frameworks, pages 51–61.

Perez, H. and Tah, J. H. M. (2020). Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE. Mathematics, 8(5).

Rahman, H. U., Ahmad, M., Ahmad, H., and Habib, M. A. (2020). LoRaWAN: State of the art, challenges, protocols and research issues. In 2020 IEEE 23rd International Multitopic Conference (INMIC), pages 1–6.

Sarmento Neto, G. A., Da Silva, T. A. R., Abreu, P. F. F., Veloso, A. F. D. S., Mendes, L. H. d. O., and Dos Reis, J. V. (2024a). Addressing mobility challenges in LoRaWAN through adaptive data rate: A statistical median-based approach. In 2024 11th International Conference on Future Internet of Things and Cloud (FiCloud), pages 330–337.

Sarmento Neto, G. A., da Silva, T. A. R., Abreu, P. F. F., Veloso, A. F. D. S., Mendes, L. H. D. O., and dos Reis Junior, J. V. (2024b). A percentile based ADR for mobile LoRaWAN applications. In XLII Brazilian Symposium on Computer Networks and Distributed Systems (SBRC), pages 43–56, Porto Alegre, RS, Brasil. SBC.

Semtech (2016). LoRaWAN Simple Rate Adaptation Recommended Algorithm. Rev. 1.0. [link]. Retrieved on January 6, 2025.

Soy, H. (2023). An adaptive spreading factor allocation scheme for mobile LoRa networks: Blind ADR with distributed TDMA scheduling. Simulation Modelling Practice and Theory, 125, 102755.

Teymuri, B., Serati, R., Anagnostopoulos, N. A., and Rasti, M. (2023). LP-MAB: Improving the energy efficiency of LoRaWAN using a reinforcement-learning-based adaptive configuration algorithm. Sensors, 23(4).

Wang, H., Zhang, X., Liao, J., Zhang, Y., and Li, H. (2024). An improved adaptive data rate algorithm of LoRaWAN for agricultural mobile sensor nodes. Computers and Electronics in Agriculture, 219, 108773.
Publicado
19/05/2025
SARMENTO NETO, Geraldo A.; SILVA, Thiago A. R.; ABREU, Pedro F. F.; VELOSO, Artur F. da S.; MENDES, Luis H. de O.; R. JUNIOR, José Valdemir. Towards Energy-Aware LoRaWAN ADR for Mobile Scenarios Through Dynamic Margin Control. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 644-657. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2025.6336.

Artigos mais lidos do(s) mesmo(s) autor(es)