Channel-Aware Federated Analytics in B5G/6G Networks: Dynamic Power Allocation with NS-3 5G-LENA
Resumo
Federated Analytics (FA) is an approach for preserving security and privacy by implementing collaborative analysis of data from distributed devices without sharing raw data. However, when FA operates over wireless transmission, challenges such as interference, signal degradation, and network congestion may arise. These factors can make the wireless transmission unreliable, introducing delays and causing corruption in responses and updates received at the central server, thereby impacting the quality of the final aggregated FA results. This work proposes an integrated framework to simulate FA in real 5G conditions using NS-3 5G-LENA. It applies two algorithms: a channel-aware power allocation algorithm for optimized transmission power allocation and a synchronous FA-5GLENA algorithm for the FA and 5G-LENA integration. Simulation results show the channel-aware algorithm outperforms uniform and random power allocation in both network and FA performance. FA accuracy reached 93.17 %, precision 93.31 %, and recall 93.09 %, statistically significantly higher than uniform (55.96 %, 56.02 %, 55.90 %) and random (42 %, 42.02 %, 41.96 %) allocation. These findings demonstrate the algorithm’s superiority in enhancing FA within 5G networks.
Referências
38.901, G. T. (2017). Study on channel model for frequencies from 0.5 to 100 ghz.
Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., & Cui, S. (2021). A joint learning and communications framework for federated learning over wireless networks. IEEE Transactions on Wireless Communications, 20(1), 269–283.
Elkordy, A. R., Ezzeldin, Y. H., Han, S., Sharma, S., He, C., Mehrotra, S., & Avestimehr, S. (2023). Federated analytics: A survey. APSIPA Transactions on Signal and Information Processing, 12(1).
ETSI. (2022). Multi-access edge computing (MEC) framework and reference architecture. ETSI Standard GS MEC 003.
Hapanchak, V. S., & Costa, A. D. (2022). Emulation of multipath solutions in heterogeneous wireless networks over ns-3 platform. In D. Jiang & H. Song (Eds.), Simulation tools and techniques (Vol. 424, pp. 3–18). Springer International Publishing.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., et al. (2021). Advances and open problems in federated learning. Now Foundations and Trends.
Larrañaga, A., Lucas-Estañ, M. C., Lagén, S., Ali, Z., Martinez, I., & Gozalvez, J. (2023). An open-source implementation and validation of 5G NR configured grant for URLLC in ns-3 5G LENA: A scheduling case study in industry 4.0 scenarios. Journal of Network and Computer Applications, 215, 103638.
Ramachandran, K. M., & Tsokos, C. P. (2009). Mathematical statistics with applications. Academic Press.
Shi, S., Hu, C., Wang, D., Zhu, Y., and Han, Z. (2022). Federated Anomaly Analytics for Local Model Poisoning Attack. 40(2):596–610.
Toka, L., Konrad, M., Pelle, I., Sonkoly, B., Szabó, M., Sharma, B., Kumar, S., Annavazala, M., Deekshitula, S. T., & Franklin, A. A. (2023). 5G on the roads: Latency-optimized federated analytics in the vehicular edge. IEEE Access.
Wang, Z., Ji, H., Zhu, Y., Wang, D., & Han, Z. (2024). A survey on federated analytics: Taxonomy, enabling techniques, applications and open issues.
Yue, X., Kontar, R. A., and Gómez, A. M. E. (2024). Federated Data Analytics: A Study on Linear Models. 56(1):16–28.
Zhao, L., Valero, M., Pouriyeh, S., Li, F., Guo, L., & Han, Z. (2024). A decentralized communication-efficient federated analytics framework for connected vehicles. pp. 1–6.
Zhao, L., Valero, M., Pouriyeh, S., Li, L., and Sheng, Q. Z. (2022). Communication-Efficient Semihierarchical Federated Analytics in IoT Networks. 9(14):12614–12627.
Zárate Ceballos, H., Parra Amaris, J. E., Jiménez Jiménez, H., Romero Rincón, D. A., Agudelo Rojas, O., & Ortiz Trivino, J. E. (2021). Wireless network simulation: A guide using ad hoc networks and the ns-3 simulator. Apress.