RanA: Uma Abordagem Híbrida para QKD BB84 com Expansão e Encapsulamento de Chave
Resumo
A criptografia quântica, exemplificada pelo protocolo BB84, permite a distribuição segura de chaves com base em princípios da mecânica quântica, como superposição e o teorema da não clonagem. Contudo, limitações na taxa de geração de chaves, escalabilidade, problemas de atenuação e ruído nos canais quânticos dificultam sua aplicação prática em cenários de alta demanda. Este estudo propõe uma abordagem híbrida que combina o BB84 com derivação de chaves baseada no Argon2 e amplificação de privacidade utilizando o Kyber512, reduzindo assim a dependência dos canais quânticos e aumentando a eficiência e a robustez contra ataques quânticos. Os resultados experimentais validam a escalabilidade e a segurança do protocolo.
Palavras-chave:
Computação Quântica, Criptografia Quântica, Pós-Quântico, Distribuição de Chave Quântica
Referências
Bennett, C. H., & Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560, 7–11.
Bhatia, A., Bitragunta, S., & Tiwari, K. (2025). Enhanced lightweight quantum key distribution protocol for improved efficiency and security. IEEE Open Journal of the Communications Society.
Biryukov, A., Dinu, D., & Khovratovich, D. (2016). Argon2: New generation of memory-hard functions for password hashing and other applications. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 292–302). IEEE.
Brassard, G., Lütkenhaus, N., Mor, T., & Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical Review Letters, 85(6), 1330.
Chen, Y.-A., Zhang, Q., Chen, T.-Y., Cai, W.-Q., Liao, S.-K., Zhang, J., Chen, K., Yin, J., Ren, J.-G., Chen, Z., et al. (2021). An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589(7841), 214–219.
Coopmans, T., Knegjens, R., Dahlberg, A., Maier, D., Nijsten, L., de Oliveira Filho, J., Papendrecht, M., Rabbie, J., Rozpędak, F., Skrzypczyk, M., Wubben, L., de Jong, W., Podareanu, D., Torres-Knoop, A., Elkouss, D., & Wehner, S. (2021). Netsquid, a network simulator for quantum information using discrete events. Communications Physics, 4(1), 164.
Gitonga, C. K. (2025). The impact of quantum computing on cryptographic systems: Urgency of quantum-resistant algorithms and practical applications in cryptography. European Journal of Information Technologies and Computer Science, 5(1), 1–10.
Jiang, Y., Liu, B., Guo, C., & Zhao, J. (2021). A quantum pseudo-random number generation scheme. Journal of Physics: Conference Series, 2004(1), 012001.
Kamel, O. H. A., Raslan, A. T. N. E.-D., Aly, T., & Gheith, M. (2024). Quantum computing’s impact on data encryption: Methodologies, implementation, and future directions: Exploring the BB84 protocol and comparative analysis with classical cryptographic techniques. In 2024 Intelligent Methods, Systems, and Applications (IMSA) (pp. 213–217). IEEE.
Kaur, H., & Singh, J. S. P. (2024). Software defined network implementation of multi-node adaptive novel quantum key distribution protocol. AIMS Electronics & Electrical Engineering, 8(4).
Lee, C., Sohn, I., & Lee, W. (2022). Eavesdropping detection in BB84 quantum key distribution protocols. IEEE Transactions on Network and Service Management, 19(3), 2689–2701.
Liao, C.-T., Bahrani, S., da Silva, F. F., & Kashefi, E. (2022). Benchmarking of quantum protocols. Scientific Reports, 12(1), 5298.
Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
Peixoto, M. L. M. (2024). Quantum edge computing for data analysis in connected autonomous vehicles. In 2024 IEEE Symposium on Computers and Communications (ISCC) (pp. 1–6). IEEE.
Rahmanpour, M., Erfanian, A., Afifi, A., Khaje, M., & Fahimifar, M. H. (2024). A new quantum key distribution protocol to reduce afterpulse and dark counts effects. Results in Optics, 100718.
Wang, J., Rollick, B. J., Jia, Z., & Huberman, B. A. (2024). Time-interleaved C-band co-propagation of quantum and classical channels. Journal of Lightwave Technology, 42(11), 4086–4095.
Wolf, R. (2021). Quantum Key Distribution: An Introduction with Exercises (Vol. 988). Springer.
Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886), 802–803.
Bhatia, A., Bitragunta, S., & Tiwari, K. (2025). Enhanced lightweight quantum key distribution protocol for improved efficiency and security. IEEE Open Journal of the Communications Society.
Biryukov, A., Dinu, D., & Khovratovich, D. (2016). Argon2: New generation of memory-hard functions for password hashing and other applications. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 292–302). IEEE.
Brassard, G., Lütkenhaus, N., Mor, T., & Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical Review Letters, 85(6), 1330.
Chen, Y.-A., Zhang, Q., Chen, T.-Y., Cai, W.-Q., Liao, S.-K., Zhang, J., Chen, K., Yin, J., Ren, J.-G., Chen, Z., et al. (2021). An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589(7841), 214–219.
Coopmans, T., Knegjens, R., Dahlberg, A., Maier, D., Nijsten, L., de Oliveira Filho, J., Papendrecht, M., Rabbie, J., Rozpędak, F., Skrzypczyk, M., Wubben, L., de Jong, W., Podareanu, D., Torres-Knoop, A., Elkouss, D., & Wehner, S. (2021). Netsquid, a network simulator for quantum information using discrete events. Communications Physics, 4(1), 164.
Gitonga, C. K. (2025). The impact of quantum computing on cryptographic systems: Urgency of quantum-resistant algorithms and practical applications in cryptography. European Journal of Information Technologies and Computer Science, 5(1), 1–10.
Jiang, Y., Liu, B., Guo, C., & Zhao, J. (2021). A quantum pseudo-random number generation scheme. Journal of Physics: Conference Series, 2004(1), 012001.
Kamel, O. H. A., Raslan, A. T. N. E.-D., Aly, T., & Gheith, M. (2024). Quantum computing’s impact on data encryption: Methodologies, implementation, and future directions: Exploring the BB84 protocol and comparative analysis with classical cryptographic techniques. In 2024 Intelligent Methods, Systems, and Applications (IMSA) (pp. 213–217). IEEE.
Kaur, H., & Singh, J. S. P. (2024). Software defined network implementation of multi-node adaptive novel quantum key distribution protocol. AIMS Electronics & Electrical Engineering, 8(4).
Lee, C., Sohn, I., & Lee, W. (2022). Eavesdropping detection in BB84 quantum key distribution protocols. IEEE Transactions on Network and Service Management, 19(3), 2689–2701.
Liao, C.-T., Bahrani, S., da Silva, F. F., & Kashefi, E. (2022). Benchmarking of quantum protocols. Scientific Reports, 12(1), 5298.
Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
Peixoto, M. L. M. (2024). Quantum edge computing for data analysis in connected autonomous vehicles. In 2024 IEEE Symposium on Computers and Communications (ISCC) (pp. 1–6). IEEE.
Rahmanpour, M., Erfanian, A., Afifi, A., Khaje, M., & Fahimifar, M. H. (2024). A new quantum key distribution protocol to reduce afterpulse and dark counts effects. Results in Optics, 100718.
Wang, J., Rollick, B. J., Jia, Z., & Huberman, B. A. (2024). Time-interleaved C-band co-propagation of quantum and classical channels. Journal of Lightwave Technology, 42(11), 4086–4095.
Wolf, R. (2021). Quantum Key Distribution: An Introduction with Exercises (Vol. 988). Springer.
Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886), 802–803.
Publicado
19/05/2025
Como Citar
FREIRE, Marcus; MELLO, Thiago Luigi; SANT'ANNA, Isys; MAIA, Adriano; MOREIRA, Rodrigo; RIVELINO, Roberto; PEIXOTO, Maycon.
RanA: Uma Abordagem Híbrida para QKD BB84 com Expansão e Encapsulamento de Chave. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 938-951.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2025.6431.