Analysis on Optical Networks with Routing, Modulation and Spectrum Allocation Heuristics for Incremental Traffic

  • Leonardo A. J. Mesquita Universidade Federal da Bahia
  • Karcius D. R. Assis Universidade Federal da Bahia

Abstract


Advances in optical data transmission technology have enabled the rapid growth of the internet and demanding bandwidth services. The emergence of Orthogonal Frequency Division Multiplexing (OFDM) based networks has opened the possibility of increasing the spectral efficiency of a network by solving the routing and spectrum allocation (RSA) problem. In this work, two RSA heuristics were implemented that consider different available modulation formats (RMSA). Simulations were made for several networks using heuristics under incremental traffic conditions. The results showed that the load-balanced allocation heuristic (BMLM) tended to have a lower blocking rate in the early periods, when only one modulation format was available, but presented a higher long-term blockage rate relative to the heuristic. Shortest Path Allocation (SPMLM). When more modulation formats were available, BMLM performed worse in most cases, but achieved better results on some networks.

Keywords: Elastic Optical Networks, Load Balancing, Spectral Allocation

References

Abkenar, F. S., and Rahbar, A. G. (2017). Study and analysis of routing and spectrum allocation (RSA) and routing, modulation and spectrum allocation (RMSA) algorithms in elastic optical networks, Opt. Switch. and Netw., vol. 23, pp. 5–39.

Agrawal, A., Vyas, U., Bhatia, V., and Prakash, S. (2017). SLA-aware differentiated QoS in elastic optical networks, Optical Fiber Technology, vol. 36, pp. 41-50, 2017.

Wang, Y., Cao, X., and Pan, Y. (2011). A Study of the Routing and Spectrum Allocation in Spectrum-Sliced Elastic Optical Path Networks. 2011 Proceedings IEEE INFOCOM.

Agrawal, G. (2013). Fiber-optic communication systems. Hoboken, N.J.: Wiley. Cisco Systems. (2017). The Zettabyte Era: Trends and Analysis, available at https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networkingindex- vni/vni-hyperconnectivity-wp.pdf, June, 2017.

Christodoulopoulos, K., Tomkos, I., and Varvarigos., E. A. (2011). “Elastic bandwidth allocation in flexible ofdm-based optical networks,” Journal of Lightwave Technology, vol. 29, no. 9, pp. 1354–1366.

Fontinele, A., Santos, I., Larcerda, J., Soares, A., Monteiro, J. S. (2018). Campelo, D. R., Alocação de Espectro com Redução de Interferências entre Circuitos em Redes Ópticas Elásticas. Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), [S.l.], v. 36, may 2018. ISSN 2177-9384.

Telecommunication Standardization Section of ITU. (2002). Spectral grids for WDM applications: DWDM frequency grid, ITU-T G.694.2.

Jaya, T., Gopinathan, E., and Rajendran, V. (2016). Comparison of BER Performance of Various Adaptive Modulation Schemes in OFDM Systems. Indian Journal of Science and Technology, vol. 9, no. 40.

Jia, X., Ning, F., Yin, S.,Wang, D., Zhang, J., Huang, S. (2015). An Integrated ILP Model for Routing, Modulation Level and Spectrum Allocation in The Next Generation DCN. Third International Conference on Cyberspace Technology (CCT 2015).

Jinno, M., T, H., Kozicki, B., Tsukishima, Y., Sone, Y., and Matsuoka, S. (2009). Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies, IEEE Communications Magazine, vol. 47, no. 11, pp. 66–73.

Oliveira, Helder M. N. S., and Nelson L. S. Da Fonseca. (2017). Routing, Spectrum, Core and Modulation Level Assignment Algorithm for Protected SDM Optical Networks.” GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

Pioro, M., and Medhi, D. (2004). Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufmann.

Silva, K. A., Brasileiro, I. B., Costa, L. R., and Drummond, A. C. (2018). Estudo Sobre o Uso de Métricas de Fragmentac¸ ão de Espectro no Projeto de Algoritmos RSA. Anais do Simp´osio Brasileiro de Redes de Computadores e Sistemas Distribu´ıdos (SBRC), [S.l.], v. 36, ISSN 2177-9384.

Straub, Stefan., Kirstadter, A., Schupke, D.A., “Multi-Period Planning of WDM-Networks: Comparison of Incremental and EoL Approaches.” 2006 2nd IEEE/IFIP International Conference in Central Asia on Internet, 2006, doi:10.1109/canet.2006.279271.

Velasco, L., Morales, F., Gifre, L., Castro. A., Dios, G. O., and Ruiz, M., “On-demand incremental capacityplanning in optical transport networks,”IEEE/OSA Jour-nal of Optical Communications and Networking, vol. 8,no. 1, pp. 11–22, January 2016.

Iyer, S. and Singh, P. S., “Multiple-Period Planning of Internet Protocol-over-Elastic Optical Networks.” Journal of Information and Telecommunication, vol. 3, no. 1, 2018, pp. 39–56., doi:10.1080/24751839.2018.1526448.

Soumplis, P., Christodoulopoulos, K., Quagliotti, M., Pagano, A., Varvarigos, M. Multi- Period Planning With Actual Physical and Traffic Conditions. Journal of Optical Communications and Networking, vol. 10, no. 1, 2017, doi:10.1364/jocn.10.00a144. 2017.

Yen, J. (1971). Finding the k shortest loopless paths in a network,”Management Science, vol. 17, no. 11, pp. 712-16.

Zhang, G., Leenheer, M. D., Morea, A., and Mukherjee, B. (2013). A survey on ofdmbased elastic core optical networking, Commun. Surv. Tutorials, IEEE 15 (1) 65–87.
Published
2019-05-06
MESQUITA, Leonardo A. J.; ASSIS, Karcius D. R.. Analysis on Optical Networks with Routing, Modulation and Spectrum Allocation Heuristics for Incremental Traffic. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 37. , 2019, Gramado. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 473-486. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2019.7380.