EROS-5: Gerador de Tráfego Sintético para Redes 5G

  • Rafael Amaral Soares Universidade de Brasília
  • Gabriel Carvalho Ferreira Universidade de Brasília
  • Priscila America Solis Universidade de Brasília
  • Marcos Fagundes Caetano Universidade de Brasília

Resumo


Este trabalho apresenta a ferramenta EROS-5 (gErador de tRáfego sintéticO para redeS 5G), que permite simular uma variedade de aplicações tais como streaming de vídeo, VoIP (Voice over IP), Web e IoT e pode ser usado em cenários de redes 5G. EROS-5 é uma ferramenta de código aberto e parametrizável que permite facilmente o acoplamento de novos modelos matemáticos para geração de novos tipos de tráfego. O tráfego gerado é definido por um conjunto de parâmetros típicos da aplicação e tem o formato de séries temporais em JSON, para prover a flexibilidade necessária e potencial de ser utilizado por vários simuladores tais como ns-3 e OMNET++.

Palavras-chave: Simulação, NS-3, Tráfego, Modelagem, VoIP, WEB, IOT, Streaming

Referências

3GPP (2015). 3GPP TR 45.820 V13.1.0 - Cellular system support for ultra-low comple-xity and low throughput Internet of Things (CloT). Technical report.

5G-Range (2018). Application and requirements report. Technical report.nttp://5g-range.eu/wp-content /uploads/2019/02/5G-RangeD2.1 V3.pdf.

Chen, Y., Farley, T., and Ye, N. (2004). Qos requirements of network applications on theinternet. Inf. Knowl. Syst. Manag., 4(1):55-76.

CTTC (2019). The first release of 5g-lena is available. nttp://www.cttc.es/the-first-release-of-5g-lena-is-available/.

Da Silva, W. R., Oliveira, L., Kumar, N., Rabêlo, R. A. L., Marins, C. N. M., and Rodri-gues, J.J. P.C. (2018). An internet of things tracking system approach based on loraprotocol. In 2018 IEEE Global Communications Conference (GLOBECOM), pages1-7.

Ericsson (2019). Ericsson mobility report. Technical report, Ericsson. https://www.ericsson.com/4acdle/assets/local/mobility-report/documents/2019/emr-november-2019.pdf.

Gupta, V., Devar, S. K., Kumar, N. H., and Bagadi, K. P. (2017). Modelling of iot trafficand its impact on lorawan. In GLOBECOM 2017 - 2017 IEEE Global CommunicationsConference, pages 1-6.

Hoßfeld, T., Metzger, F., and Heegaard, P. E. (2018). Traffic modeling for aggregatedperiodic iot data. In 2018 21st Conference on Innovation in Clouds, Internet andNetworks and Workshops (ICIN), pages 1-8.

Hyoung-Kee Choi and Limb, J. O. (1999). A behavioral model of web traffic. In Procee-dings. Seventh International Conference on Network Protocols, pages 327-334.

Jain, R. (1991). The art of computer systems performance analysis - techniques for expe-rimental design, measurement, simulation, and modeling. Wiley professional compu-ting. Wiley.

Kettani, H. and Gubner, J. A. (2003). Estimation of the long-range dependence parameterof fractional arima processes. In 28th Annual IEEE International Conference on LocalComputer Networks, 2003. LCN "03. Proceedings., pages 307-308.

Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D. V. (1994). On the self-similarnature of ethernet traffic (extended version). IEEE/ACM Transactions on Networking,2(1):1-15.

Maternia, M., El Ayoubi, S. E., Fallgren, M., Spapis, P., Qi, Y., Martín-Sacristán, D.,Carrasco, , Fresia, M., Payaró, M., Schubert, M., Bedo, J. S., and Kulkarni, V. (2016).5G PPP Use Cases and Performance Evaluation Models. 5GPPP.

Mattos, C. I., Ribeiro, E. P., Fernandez, E. M. G., and Pedroso, C. M. (2012). An unifiedVoIP model for workload generation. Multimedia Tools and Applications, 70(3):2309-2329.

Pries, R., Magyari, Z., and Tran-Gia, P. (2012). An http web traffic model based on thetop one million visited web pages. In Proceedings of the 8th Euro-NF Conference onNext Generation Internet NG! 2012, pages 133-139.

Sandvine (2018). 2018 global internet phenomena report. https: //www. sandvine.com/2018-internet-phenomena-report.

Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vishwa-nath, A., and Sivaraman, V. (2017). Characterizing and classifying iot traffic insmart cities and campuses. In 2017 IEEE Conference on Computer CommunicationsWorkshops (INFOCOM WKSHPS), pages 559-564.

Waldmann, S., Miller, K., and Wolisz, A. (2017). Traffic model for http-based adap-tive streaming. In 2017 IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS), pages 683-688.

Zheleva, M., Schmitt, P., Vigil, M., and Belding, E. (2013). The increased bandwidthfallacy. In Proceedings of the 4th Annual Symposium on Computing for Development- ACM DEV-4 13. ACM Press.
Publicado
07/12/2020
SOARES, Rafael Amaral; FERREIRA, Gabriel Carvalho; SOLIS, Priscila America; CAETANO, Marcos Fagundes. EROS-5: Gerador de Tráfego Sintético para Redes 5G. In: SALÃO DE FERRAMENTAS - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 38. , 2020, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 41-48. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2020.12400.