Correntes de Blocos em Redes Virtualizadas: Protocolos de Consenso e Fatiamento Seguro da Rede
Resumo
A corrente de blocos (blockchain) é uma tecnologia disruptiva que deve revolucionar o nosso modo de viver, trabalhar e negociar. Assim como a Internet permite hoje a transferência de arquivos, esta nova tecnologia construirá uma Internet de Valores, na qual é possível transferir recursos de valor, como dinheiro, ações, propriedade intelectual, votos, etc. sem o intermédio de agentes reguladores. No entanto, um dos principais desafios de sistemas baseados em correntes de blocos é selecionar o protocolo de consenso distribuído mais adaptado para cada caso de uso. A primeira parte deste trabalho discute os conceitos e os modelos de consenso para diferentes tipos de correntes de blocos. Diversos protocolos de consenso são apresentados especificando suas características, suas vantagens, suas desvantagens e finalidades. A seguir, o trabalho propõe uma arquitetura para prover segurança à Internet baseada no fatiamento da rede (network slicing), que objetiva oferecer serviços fim-a-fim de rede ágeis e sob demanda para cada tipo de aplicação. A arquitetura provê auditabilidade às operações de orquestração de fatias de rede. O trabalho desenvolve e implementa um protótipo da arquitetura proposta através de contratos inteligentes na plataforma Hyperledger Fabric. Os resultados mostram que é possível prover segurança à orquestração de fatias de rede, mas que a latência de obtenção do consenso e a vazão de transações requeridas pelas fatias de rede constituem um desafio a ser investigado caso a caso.
Referências
Backman, J., Yrjólã, S., Valtanen, K. e Mâmmelã, O. (2017). Blockchain network slice broker in 5G: Slice leasing in factory of the future use case. Em Internet of Things Business Models, Users, and Networks, páginas 1-8.
Bessani, A., Sousa, J. e Alchieri, E. (2014). State machine replication for the masses with BFT-SMaRt. Em IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN).
Bhamare, D., Jain, R., Samaka, M. e Erbad, A. (2016). A survey on service function chaining. Journal of Network and Computer Applications, 75:138-155.
Bordel, B., Orúe, A. B., Alcarria, R. e Sánchez-De-Rivera, D. (2018). An intra-slice security solution for emerging 5G networks based on pseudo-random number generators. IEEE Access, 6:16149-16164.
Boudguiga, A., Bouzerna, N., Granboulan, L., Olivereau, A., Quesnel, F., Roger, A. eSirdey, R. (2017). Towards better availability and accountability for IoT updates by means of a blockchain. Em IEEE EuroS&PW, páginas 50-58.
Bozic, N., Pujolle, G. e Secci, S. (2017). Securing virtual machine orchestration with blockchains. Em 1st Cyber Security in Networking Conference.
Buterin, V. e Griffith, V. (2017). Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437.
Cachin, C. e Vukolié, M. (2017). Blockchains consensus protocols in the wild. ArXiv preprint arXiv:1707.01873.
Capossele, A., Gaglione, A., Nati, M., Conti, M., Lazzeretti, R. e Missier, P. (2018). Leveraging blockchain to enable smart-health applications. Em IEEE 4th International Forum on Research and Technology for Society and Industry (RTS1), páginas 1-6.
Castro, M. e Liskov, B. (1999). Practical byzantine fault tolerance. Em Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI "99, páginas 173-186, Berkeley, CA, USA. USENIX Association.
Coin Market (2019). Cryptocurrency global charts: Total market capitalization. Relatório técnico, Coin Market. Acessado em 31 de agosto de 2019.
Digiconomist (2019). Bitcoin Energy Consumption Index. Acessado em 31 de agosto de2019.
Eletrobras (2017). Relatórios de sustentabilidade socioambiental. Relatório técnico, Eletrobras S.A. Acessado em 31 de agosto de 2019.
Eyal, I., Gencer, A. E., Sirer, E. G. e Van Renesse, R. (2016). Bitcoin-ng: A scalable blockchain protocol. Em /3th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), páginas 45-59.
Glaser, F. (2017). Pervasive decentralisation of digital infrastructures: a framework for blockchain enabled system and use case analysis. Em 50th Hawaii International Conference on System Sciences.
Instituto Brasileiro de Geografia e Estatística (2019). Produto interno bruto - PIB. Acessado em 31 de agosto de 2019.
Khettab, Y., Bagaa, M., Dutra, D. L. C., Taleb, T. e Toumi, N. (2018). Virtual security as a service for 5G verticals. Em IEEE Wireless Communications and Networking Conference (WCNC), páginas 1-6.
Kwon, J. (2014). Tendermint: Consensus without mining. Acessado em 31 de agosto de2019.
Lamport, L. (1998). The Part-Time Parliament. ACM Transactions Computer Systems, 16(2):133-169.
Medhat, A. M., Taleb, T., Elmangoush, A., Carella, G. A., Covaci, S. e Magedanz, T.(2017). Service Function Chaining in Next Generation Networks: State of the Art and Research Challenges. IEEE Communications Magazine, 55(2):216-223.
Ministério de Minas e Energia (2017). Anuário estatístico de energia elétrica 2017. Relatório técnico, Ministério de Minas e Energia do Brasil. Acessado em 31 de agosto de2019.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Acessado em 31de agosto de 2019.
NXT community (2014). Nxt whitepaper. Acessado em 31 de agosto de 2019.
Ongaro, D. e Ousterhout, J. (2014). In Search of an Understandable Consensus Algorithm. Em 2014 USENIX Annual Technical Conference (USENIX ATC 14), páginas 305-319, Philadelphia, PA. USENIX Association.
Ortega, V., Bouchmal, F. e Monserrat, J. F. (2018). Trusted 5G vehicular networks: Blockchains and content-centric networking. IEEE Vehicular Technology Magazine,13(2):121-127.
Paladi, N., Michalas, A. e Hai-Van, D. (2018). Towards secure cloud orchestration for multi-cloud deployments. Em EuroSys-CrossCloud.
Pattaranantakul, M., He, R., Song, Q., Zhang, Z. e Meddahi, A. (2018). NFV security survey: From use case driven threat analysis to state-of-the-art countermeasures. IEEE Communications Surveys & Tutorials.
Popov, S. (2017). The Tangle. cit. on, página 131. Acessado em 31 de agosto de 2019.
Rawat, D. B. e Alshaikhi, A. (2018). Leveraging distributed blockchain-based scheme for wireless network virtualization with security and QoS constraints. Em International Conference on Computing, Networking and Communications (ICNC).
Thuemmler, C., Rolffs, C., Bollmann, A., Hindricks, G. e Buchanan, W. (2018). Requirements for 5G based telemetric cardiac monitoring. Em 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).
Valtanen, K., Backman, J. e Yrjólã, S. (2018). Creating value through blockchain powered resource configurations: Analysis of 5G network slice brokering case. Em IEEEWCNCW'I8, páginas 185-190.
Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Acessado em 31 de agosto de 2019.
Xiao, Y., Zhang, N., Lou, W. e Hou, Y. T. (2019). A survey of distributed consensus protocols for blockchain networks. CoRR, abs/1904.04098.
Yahiatene, Y. e Rachedi, A. (2018). Towards a blockchain and software-defined vehicular networks approaches to secure vehicular social network. Em IEEE Conference onStandards for Communications and Networking (CSCN), páginas 1-7.