MineCap: Detecção de Mineração de Criptomoedas em Redes Corporativas com Aprendizado de Máquina e Prevenção de Abusos com Redes Definidas por Software

  • Hélio Nascimento Cunha Neto Universidade Federal Fluminense
  • Natalia Castro Fernandes Universidade Federal Fluminense
  • Diogo Menezes Ferrazani Mattos Universidade Federal Fluminense

Resumo


A mineração não autorizada de criptomoedas implica o uso de valiosos recursos de computação e o alto consumo de energia. Este trabalho propõe o mecanismo MineCap, um mecanismo dinâmico e em linha para detectar e bloquear fluxos de mineração não autorizada de criptomoedas, usando o aprendizado de máquina e redes definidas por software. O MineCap desenvolve a técnica de super aprendizado incremental, uma variante do super learner aplicada ao aprendizado incremental. O super aprendizado incremental proporciona ao MineCap precisão para classificar os fluxos de mineração ao passo que o mecanismo aprende continuamente com os dados recebidos. Os resultados revelam que o mecanismo alcança 98% de acurácia, 99% de precisão, 97% de sensibilidade e 99,9% de especificidade e evita problemas relacionados ao desvio de conceito. Os resultados desse trabalho foram submetidos e aceitos em um congresso internacional, um congresso nacional, um minicurso, uma revista indexada e, ainda, há um artigo em processo de revisão em uma revista.

Palavras-chave: Mineração de Criptomoedas, aprendizado de máquina, aprendizado incremental

Referências

Andreoni Lopez, M., Sanz, I., Menezes, D., Duarte, O. e Pujolle, G. (2017). Catraca: uma ferramenta para classificação e análise tráfego escalável baseada em processamento por fluxo. Salão de Ferramentas do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais-SBSeg.

Konoth, R. K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel, C., Bos, H. e Vigna,G. (2018). Minesweeper: An in-depth look into drive-by cryptocurrency mining and its defense. EmProceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, páginas1714-1730. ACM.

Liu,J., Zhao, Z., Cui, X., Wang, Z. e Liu, Q. (2018). A novel approach for detecting browser-based silent miner. Em 2018 IEEE Third International Conference on Data Science in Cyberspace(DSC), páginas 490-497.

Luengo, J., Fernández, A., García, S. e Herrera, F. (2011). Addressing data complexity for imbalanced data sets: analysis of smote-based oversampling and evolutionary undersampling. Soft Computing, 15(10):1909-1936.

Medeiros, D. S. V., Cunha Neto, H. N., Andreoni Lopez, M., Magalhães, L. C. S.,Silva, E. F. Vieira, A. B., Fernandes, N. C. e Mattos, D. M. F. (2019). Análise de dados em redes sem fio de grande porte: Processamento em fluxo em tempo real, tendências e desafios. Minicursos doSimpósio Brasileiro de Redes de Computadores-SBRC, 2019:142-195.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S. etal. (2016). Mllib: Machine learning in apache spark. The Journal of Machine Learning Research, 17(1):1235-1241.

Neto, H. N. C., Fernandes, N. C. e Mattos, D. M. F. (2019a). Minecap: Online detection and blocking of cryptocurrency mining on software-defined networking. Em 1st Blockchain, Robotics and AI for Networking Security Conference. DNAC.

Neto, H. N.C., Lopez, M. A., Fernandes, N. C. e Mattos, D. M. F. Minecap: super incremental learning for detecting and blocking cryptocurrency mining on software-defined networking. Annals of Telecommunications, páginas I-11.

Neto, H.N.C., Lopez, M. A., Fernandes, N. C. e Mattos, D. M. F. (2019b). Um mecanismo de aprendizado incremental para detecção e bloqueio de mineração de criptomoedas em redes definidas por software. XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais-SBSeg.

Rodriguez, J. D. P. e Posegga, J. (2018). Rapid: Resource and api-based detection against in-browser miners. Em Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC "18, páginas 313-326, New York, NY, USA. ACM.

Tahir, R., Huzaifa, M., Das, A., Ahmad, M., Gunter, C., Zaffar, F., Caesar, M. e Borisov, N. (2017). Mining on someone else's dime: Mitigating covert mining operations in clouds and enterprises. Em International Symposium on Research in Attacks, Intrusions, and Defenses, páginas 287-310. Springer.

The OpenFlow Consortium (2012). OpenFlow Switch Specification Version 1.3.0 (Wire Protocol 0x04). The OpenFlow Consortium.

Van der Laan, M.J., Polley, E. C. e Hubbard, A. E. (2007). Super learner. Statistical applications in genetics and molecular biology, 6(1).

Wang, W., Ferrell, B., Xu, X., Hamlen, K. W. e Hao, S. (2018). Seismic: Secure in-lined script monitors for interrupting cryptojacks. Em European Symposium on Research in Computer Security, páginas 122-142. Springer.
Publicado
07/12/2020
NASCIMENTO CUNHA NETO, Hélio; FERNANDES, Natalia Castro ; MATTOS, Diogo Menezes Ferrazani. MineCap: Detecção de Mineração de Criptomoedas em Redes Corporativas com Aprendizado de Máquina e Prevenção de Abusos com Redes Definidas por Software. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 38. , 2020, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 105-112. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2020.12408.