Uma Abordagem de Fatiamento de Rede entre Múltiplos Sistemas Autônomos

  • Rodrigo Moreira UFU
  • Flávio de Oliveira Silva UFU
  • Rui Luís Andrade Aguiar UA

Resumo


O fatiamento de rede é fundamental para suportar a coexistência de requisitos divergentes sobre o mesmo recurso de rede. O fatiamento de rede foi amplamente explorado no processo de especificação e padronização da arquiteturas de redes móveis de quinta geração (5G). Por isso, as propostas da literatura concentram-se predominantemente em prover fatiamento de rede nesse segmento de rede. As abordagens que propuseram realizar o fatiamento de rede para além de redes móveis mostraram-se funcionalmente incapazes de prover fatiamento de rede entre múltiplos Sistemas Autônomos (SAs). Nesse sentido, essa pesquisa buscou de construir um método de fatiamento de rede entre múltiplos SAs, baseando-se nos algoritmos de roteamento da Internet. Experimentos realizados em cenário significativos constataram a aplicabilidade, pertinência e desempenho do método proposto em contraste com os tradicionais do estado da arte.

Referências

Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., and Flinck, H. (2018). Network Slicing and Softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys Tutorials, 20(3):2429–2453.

Basit, A., Qaisar, S., Ali, M., Naeem, M., Bruyere, M., and Rodrigues, J. J. P. C. (2020). Interconnecting networks with optimized service provisioning. Telecommunication Systems, 73(2):223–239.

Bastin, N., Bavier, A., Blaine, J., Chen, J., Krishnan, N., Mambretti, J., McGeer, R., Ricci, R., and Watts, N. (2014). The instageni initiative: An architecture for distributed systems and advanced programmable networks. Computer Networks, 61:24 – 38. Special issue on Future Internet Testbeds – Part I.

Chergui, H., Blanco, L., Garrido, L. A., Ramantas, K., Kuklínski, S., Ksentini, A., and Verikoukis, C. (2021). Zero-touch ai-driven distributed management for energy-efficient 6g massive network slicing. IEEE Network, 35(6):43–49.

de Foy, X. and Rahman, A. (2017). Network Slicing-3GPP use case. Internet-Draft, IETF Trust.

Group, G. P. A. W. et al. (2016). View on 5G architecture. White Paper, July.

Husain, S., Kunz, A., Prasad, A., Samdanis, K., and Song, J. (2018). Mobile edge computing with network resource slicing for internet-of-things. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pages 1–6, Singapore. IEEE.

ITU (2011). 3001, future networks: Objectives and design goals.

Jain, R. and Paul, S. (2013). Network virtualization and software defined networking for cloud computing: a survey. IEEE Communications Magazine, 51(11):24–31.

Moreira, R. and Silva, F. (2021). Towards 6g network slicing. In Anais do I Workshop de Redes 6G, pages 25–30, Porto Alegre, RS, Brasil. SBC.

Moreira, R., Silva, F. D. O., Rosa, P. F., and Aguiar, R. L. (2020). A smart network and compute-aware orchestrator to enhance QoS on cloud-based multimedia services. International Journal of Grid and Utility Computing, 11(1):49–61.

Nikaein, N., Schiller, E., Favraud, R., Katsalis, K., Stavropoulos, D., Alyafawi, I., Zhao, Z., Braun, T., and Korakis, T. (2015). Network store: Exploring slicing in future 5G networks. In Proceedings of the 10th International Workshop on Mobility in the Evolving Internet Architecture, MobiArch ’15, page 8–13, New York, NY, USA. Association for Computing Machinery.

Peterson, L., Culler, D., and Anderson, T. (2002). Planetlab: A testbed for developing and deploying network services. Technical White Paper.

Rost, P., Mannweiler, C., Michalopoulos, D. S., Sartori, C., Sciancalepore, V., Sastry, N., Holland, O., Tayade, S., Han, B., Bega, D., Aziz, D., and Bakker, H. (2017). IEEE Network slicing to enable scalability and flexibility in 5G mobile networks. Communications Magazine, 55(5):72–79.

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., and Parulkar, G. (2010). Can the production network be the testbed? In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI’10, page 365–378, USA. USENIX Association.

Stiemerling, M., Brunner, M., Kiesel, S., and Fu, X. (2009). TORI: User provided future networking testbeds. In 2009 IEEE International Conference on Communications Workshops, pages 1–6, Dresden, Germany. IEEE.

Stoller, M. H. R. R. L., Duerig, J., Guruprasad, S., Stack, T., Webb, K., and Lepreau, J. (2008). Large-scale virtualization in the emulab network testbed. In USENIX Annual Technical Conference, Boston, MA, Boston, MA. IEEE.

SuÑÉ, M., Bergesio, L., Woesner, H., Rothe, T., Köpsel, A., Colle, D., Puype, B., Simeonidou, D., Nejabati, R., Channegowda, M., Kind, M., Dietz, T., Autenrieth, A., Kotronis, V., Salvadori, E., Salsano, S., Körner, M., and Sharma, S. (2014). Design and implementation of the OFELIA FP7 facility: The european OpenFlow testbed. Computer Networks, 61:132 – 150. Special issue on Future Internet Testbeds – Part I.

Touch, J. D., Wang, Y. ., Pingali, V., Eggert, L., Zhou, R., and Finn, G. G. (2005). A global X-bone for network experiments. In First International Conference on Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmunities, pages 194–203, Trento, Italy. IEEE.

Wuhib, F., Yanggratoke, R., and Stadler, R. (2015). Allocating compute and network resources under management objectives in large-scale clouds. Journal of Network and Systems Management, 23(1):111–136.
Publicado
23/05/2022
MOREIRA, Rodrigo; SILVA, Flávio de Oliveira; AGUIAR, Rui Luís Andrade. Uma Abordagem de Fatiamento de Rede entre Múltiplos Sistemas Autônomos. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 40. , 2022, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 129-136. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2022.222146.