Resource Allocation in Vehicular Clouds Based on Game Theory
Abstract
Resource allocation in vehicular networks (RAVN) faces increasing challenges as the number of connected vehicles grows, requiring solutions that effectively deal with high mobility and diversity of nodes. In this context, Game Theory (GT) is a valuable approach, offering a mathematical framework for the analysis of strategic decisions. This work presents HARMONIC, a heuristic solution that uses GT to model the RAVN problem. The solution also utilizes the concept of Shapley Values to optimize the task allocation order and distribute these tasks among a larger number of vehicular clouds. The results obtained through simulations show a reduction in the number of cycles needed for allocation and lower failure rates, compared to other solutions discussed in the literature.References
Cisco, U. (2020). Cisco annual internet report (2018–2023) white paper. Cisco: San Jose, CA, USA, 10(1):1–35.
da Costa, J. B. D., Meneguette, R. I., Rosário, D., and Villas, L. A. (2020). Combinatorial optimization-based task allocation mechanism for vehicular clouds. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE.
da Costa, J. B. D., Peixoto, M. L. M., Meneguette, R. I., Rosário, D. L., and Villas, L. A. (2020). MORFEU: Mecanismo baseado em Otimização Combinatória para Alocação de Tarefas em Nuvens Veiculares. In Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 505–518. SBC.
Fan, W., Su, Y., Liu, J., Li, S., Huang, W., Wu, F., and Liu, Y. (2023). Joint Task Offloading and Resource Allocation for Vehicular Edge Computing Based on V2I and V2V Modes. IEEE Transactions on Intelligent Transportation Systems, 24(4):4277–4292.
I. Meneguette, R., E. De Grande, R., and A. F. Loureiro, A. (2018). Intelligent Transport System in Smart Cities: Aspects and Challenges of Vehicular Networks and Cloud. Urban Computing. Springer International Publishing, Cham.
Lee, S.-S. and Lee, S. (2020). Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information. IEEE Internet of Things Journal, 7(10):10450–10464.
Liu, L., Feng, J., Mu, X., Pei, Q., Lan, D., and Xiao, M. (2023). Asynchronous Deep Reinforcement Learning for Collaborative Task Computing and On-Demand Resource Allocation in Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems, pages 1–14.
Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic simulation using sumo. In 2018 21st international conference on intelligent transportation systems (ITSC), pages 2575–2582. IEEE.
Luo, Q., Li, C., Luan, T., and Shi, W. (2021). Minimizing the delay and cost of computation offloading for vehicular edge computing. IEEE Transactions on Services Computing, 1374:1–12.
Marques, H. A. P. and Meneguette, R. I. (2021). Um Mecanismo de Alocação de Recursos em Nuvens Veiculares baseado em Teoria dos Jogos. In Anais Estendidos do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 241–248. SBC.
Mitchell, R., Cooper, J., Frank, E., and Holmes, G. (2022). Sampling permutations for Shapley value estimation. The Journal of Machine Learning Research, 23(1):43:2082–43:2127.
RIBEIRO JR., A., da Costa, J. B. D., Filho, G. P. R., Villas, L. A., Guidoni, D. L., and Meneguette, R. I. (2022a). Alocação de Tarefas em Nuvens Veiculares Utilizando Jogos de Mercado. In Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 210–223. SBC.
RIBEIRO JR., A., da Costa, J. B. D., Filho, G. P. R., Villas, L. A., Guidoni, D. L., Sampaio, S., and Meneguette, R. I. (2023). HARMONIC: Shapley values in market games for resource allocation in vehicular clouds. Ad Hoc Networks, 149:103224.
RIBEIRO JR., A., Filho, G. P. R., Guidoni, D. L., de Grande, R. E., Sampaio, S., and Meneguette, R. I. (2022b). A Shapley Value-based Strategy for Resource Allocation in Vehicular Clouds. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 5801–5806.
Ruhin Kouser, R. and Manikandan, T. (2023). A novel clustering and optimal resource scheduling in vehicular cloud networks using MKMA and the CM-CSO algorithm. International Journal of Communication Systems, 36(5):e5424.
Sun, Z., Sun, G., Liu, Y., Wang, J., and Cao, D. (2023). BARGAIN-MATCH: A Game Theoretical Approach for Resource Allocation and Task Offloading in Vehicular Edge Computing Networks. IEEE Transactions on Mobile Computing, pages 1–18.
Tang, C., Zhu, C., Wei, X., Wu, H., Li, Q., and Rodrigues, J. J. (2020). Intelligent resource allocation for utility optimization in rsu-empowered vehicular network. IEEE Access, 8:94453–94462.
Uppoor, S. and Fiore, M. (2011). Large-scale urban vehicular mobility for networking research. In 2011 IEEE Vehicular Networking Conference (VNC), pages 62–69.
Wei, W., Yang, R., Gu, H., Zhao, W., Chen, C., and Wan, S. (2021). Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Transactions on Intelligent Transportation Systems.
Wu, X., Zhao, S., Zhang, R., and Yang, L. (2020). Mobility prediction-based joint task assignment and resource allocation in vehicular fog computing. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.
Yu, R., Huang, X., Kang, J., Ding, J., Maharjan, S., Gjessing, S., and Zhang, Y. (2015). Cooperative resource management in cloud-enabled vehicular networks. IEEE Transactions on industrial electronics, 62(12):7938–7951.
da Costa, J. B. D., Meneguette, R. I., Rosário, D., and Villas, L. A. (2020). Combinatorial optimization-based task allocation mechanism for vehicular clouds. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE.
da Costa, J. B. D., Peixoto, M. L. M., Meneguette, R. I., Rosário, D. L., and Villas, L. A. (2020). MORFEU: Mecanismo baseado em Otimização Combinatória para Alocação de Tarefas em Nuvens Veiculares. In Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 505–518. SBC.
Fan, W., Su, Y., Liu, J., Li, S., Huang, W., Wu, F., and Liu, Y. (2023). Joint Task Offloading and Resource Allocation for Vehicular Edge Computing Based on V2I and V2V Modes. IEEE Transactions on Intelligent Transportation Systems, 24(4):4277–4292.
I. Meneguette, R., E. De Grande, R., and A. F. Loureiro, A. (2018). Intelligent Transport System in Smart Cities: Aspects and Challenges of Vehicular Networks and Cloud. Urban Computing. Springer International Publishing, Cham.
Lee, S.-S. and Lee, S. (2020). Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information. IEEE Internet of Things Journal, 7(10):10450–10464.
Liu, L., Feng, J., Mu, X., Pei, Q., Lan, D., and Xiao, M. (2023). Asynchronous Deep Reinforcement Learning for Collaborative Task Computing and On-Demand Resource Allocation in Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems, pages 1–14.
Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic simulation using sumo. In 2018 21st international conference on intelligent transportation systems (ITSC), pages 2575–2582. IEEE.
Luo, Q., Li, C., Luan, T., and Shi, W. (2021). Minimizing the delay and cost of computation offloading for vehicular edge computing. IEEE Transactions on Services Computing, 1374:1–12.
Marques, H. A. P. and Meneguette, R. I. (2021). Um Mecanismo de Alocação de Recursos em Nuvens Veiculares baseado em Teoria dos Jogos. In Anais Estendidos do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 241–248. SBC.
Mitchell, R., Cooper, J., Frank, E., and Holmes, G. (2022). Sampling permutations for Shapley value estimation. The Journal of Machine Learning Research, 23(1):43:2082–43:2127.
RIBEIRO JR., A., da Costa, J. B. D., Filho, G. P. R., Villas, L. A., Guidoni, D. L., and Meneguette, R. I. (2022a). Alocação de Tarefas em Nuvens Veiculares Utilizando Jogos de Mercado. In Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 210–223. SBC.
RIBEIRO JR., A., da Costa, J. B. D., Filho, G. P. R., Villas, L. A., Guidoni, D. L., Sampaio, S., and Meneguette, R. I. (2023). HARMONIC: Shapley values in market games for resource allocation in vehicular clouds. Ad Hoc Networks, 149:103224.
RIBEIRO JR., A., Filho, G. P. R., Guidoni, D. L., de Grande, R. E., Sampaio, S., and Meneguette, R. I. (2022b). A Shapley Value-based Strategy for Resource Allocation in Vehicular Clouds. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 5801–5806.
Ruhin Kouser, R. and Manikandan, T. (2023). A novel clustering and optimal resource scheduling in vehicular cloud networks using MKMA and the CM-CSO algorithm. International Journal of Communication Systems, 36(5):e5424.
Sun, Z., Sun, G., Liu, Y., Wang, J., and Cao, D. (2023). BARGAIN-MATCH: A Game Theoretical Approach for Resource Allocation and Task Offloading in Vehicular Edge Computing Networks. IEEE Transactions on Mobile Computing, pages 1–18.
Tang, C., Zhu, C., Wei, X., Wu, H., Li, Q., and Rodrigues, J. J. (2020). Intelligent resource allocation for utility optimization in rsu-empowered vehicular network. IEEE Access, 8:94453–94462.
Uppoor, S. and Fiore, M. (2011). Large-scale urban vehicular mobility for networking research. In 2011 IEEE Vehicular Networking Conference (VNC), pages 62–69.
Wei, W., Yang, R., Gu, H., Zhao, W., Chen, C., and Wan, S. (2021). Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Transactions on Intelligent Transportation Systems.
Wu, X., Zhao, S., Zhang, R., and Yang, L. (2020). Mobility prediction-based joint task assignment and resource allocation in vehicular fog computing. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.
Yu, R., Huang, X., Kang, J., Ding, J., Maharjan, S., Gjessing, S., and Zhang, Y. (2015). Cooperative resource management in cloud-enabled vehicular networks. IEEE Transactions on industrial electronics, 62(12):7938–7951.
Published
2024-05-20
How to Cite
R. JÚNIOR, Aguimar; MENEGUETTE, Rodolfo I..
Resource Allocation in Vehicular Clouds Based on Game Theory. In: DISSERTATION DIGEST - BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 137-144.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc_estendido.2024.1615.
