Autonomous and Cooperative Pathfinding Technique for Swarms of Unmanned Aerial Vehicles in Dynamic Environments

  • Claudiney R. Tinoco UFU
  • Bruno A. N. Travençolo UFU
  • Luiz G. A. Martins UFU
  • Gina M. B. Oliveira UFU

Resumo


Coordinating UAV swarms requires the integration of multiple subsystems, from flight control to cooperative task execution, making it a complex challenge. The thesis proposed a pathfinding technique for swarm robotics, designed for both static and dynamic environments. This technique enabled the robots to cooperate and incrementally find paths through the swarm’s emergent behaviour. It was validated using a coordination model focused on evacuating individuals from wildfire-affected areas, where the rapid identification of safe routes is critical. Experimental results demonstrated that UAVs collaboratively identified and signalled escape routes, exhibiting robust global behaviour during search and path delineation. Moreover, the thesis contributed to the application of swarm robotics to improve safety in high-risk scenarios.
Palavras-chave: Swarm Robotics, Pathfinding, Dynamic Environments, Wildfires

Referências

Beni, G. and Wang, J. (1993). Swarm intelligence in cellular robotic systems. In Robots and Bio. Systems: Towards a New Bionics?, pages 703–712. Springer, Toscana, Italy.

Chen, J. et al. (2023). Firefighting multi strategy marine predators algorithm for the early-stage forest fire rescue problem. Applied Intelligence, 53(12):15496–15515.

Chmaj, G. and Selvaraj, H. (2015). Distributed processing applications for UAV/drones: A survey. In Int. Conf. on Systems Engineering, pages 449–454. Springer.

Ferreira, H. F., Tinoco, C. R., Martins, L. G. A., and Oliveira, G. M. B. (2023). Stochastic model for wildfire simulation based on the characteristics of the brazilian cerrado. In Int. Conf. Art. Int. Soft Comp. (ICAISC), pages 487–496, Zakopane, Poland. Springer.

Linhares, C. D. G., Tinoco, C. R., Ponciano, J. R., et al. (2022). A network-based visual analytics approach for performance evaluation of swarms of robots in the surveillance task. In Br. Conf. Intell. Syst. (BRACIS), pages 61–76, Campinas, São Paulo. Springer.

Navarro, I. and Matía, F. (2013). An introduction to swarm robotics. International Scholarly Research Notices, 2013:1–10. DOI: 10.5402/2013/608164.

Radmanesh, M., Sharma, B., Kumar, M., and French, D. (2021). PDE solution to UAV/UGV trajectory planning problem by spatio-temporal estimation during wild-fires. Chinese Journal of Aeronautics, 34(5):601–616.

Richardson, M. J. and Chemero, A. (2014). Complex dynamical systems and embodiment. In The Routledge Handbook of Embodied Cognition, pages 39–50. Routledge.

Şahin, E. (2004). Swarm robotics: From sources of inspiration to domains of application. In Int. Workshop on Swarm Robotics, pages 10–20, Santa Monica, USA. Springer.

Shahzad, M. M., Saeed, Z., Akhtar, A., Munawar, H., Yousaf, M. H., Baloach, N. K., and Hussain, F. (2023). A review of swarm robotics in a nutshell. Drones, 7(4):269.

Srinivasan, S., Dattagupta, S., Kulkarni, P., and Ramamritham, K. (2012). A survey of sensory data boundary estimation, covering and tracking techniques using collaborating sensors. Pervasive and Mobile Computing, 8(3):358–375.

Tinoco, C. R. (2024). Autonomous and Cooperative Pathfinding Technique for Swarms of Unmanned Aerial Vehicles in Dynamic Environments. Ph.D. Thesis, Faculdade de Computação (FACOM), Universidade Federal de Uberlândia (UFU). Supervisor: G. M. B. Oliviera, Ph.D. DOI: 10.14393/ufu.di.2019.325.

Tinoco, C. R., Ferreira, H. F., Martins, L. G. A., and Oliveira, G. M. B. (2022a). Wildfire simulation model based on cellular automata and stochastic rules. In Int. Conf. Cellular Automata Res. Ind. (ACRI), pages 246–256, Geneva, Switzerland. Springer.

Tinoco, C. R., Martins, L. G. A., and Oliveira, G. M. B. (2025a). Pherocom: Decentralised and asynchronous robot swarm coordination framework based on virtual pheromone and vibroacoustic communication. Swarm and Evolutionary Computation, 99:102083.

Tinoco, C. R. and Oliveira, G. M. B. (2019). Heterogeneous teams of robots using a coordinating model for surveillance task based on cellular automata and repulsive pheromone. In IEEE CEC, pages 747–754, Wellington, New Zealand. IEEE.

Tinoco, C. R., Rezende, L. P., Julia, S., and Oliveira, G. M. B. (2022b). Swarm robotics coordination dynamics modelled and formalised through coloured petri nets. In Int. Conf. on Tools with A.I. (ICTAI), pages 1441–1448, Macao, China. IEEE.

Tinoco, C. R., Travençolo, B. A. N., and Martins, L. G. A. (2024). Técnica de busca de caminhos cooperativa e autônoma para enxames de vants em ambientes dinâmicos. In XVIII Workshop Teses/Diss. em CC (WTDCC), Uberlândia, Brazil. FACOM-UFU.

Tinoco, C. R., Travençolo, B. A. N., and Martins, L. G. A. (2025b). Evaluation of a coordination model for swarms of robots in collective environment mapping. In IEEE Congress on Evolutionary Computation (CEC), Hangzhou, China. IEEE.

Tinoco, C. R., Vizzari, G., and Oliveira, G. M. B. (2020). Parameter adjustment of a bio-inspired coordination model for swarm robotics using evolutionary optimisation. In Int. Conf. Cellular Automata Res. Ind. (ACRI), pages 146–155, Łódź, Poland. Springer.

Tzoumas, G., Pitonakova, L., Salinas, L., Scales, C., et al. (2023). Wildfire detection in large-scale environments using force-based control for swarms of UAVs. Swarm Intelligence, 17(1):89–115. DOI: 10.1007/s11721-022-00218-9.

Vaidyanath, S., Georgila, K., and Traum, D. (2020). Using reinforcement learning to manage communications between humans and artificial agents in an evacuation scenario. In Int. Florida Artif. Intell. Research Soc. Conf. (FLAIRS), Miami Beach, USA.

Wu, W. and Zheng, X. (2023). A systematic analysis of subgroup research in pedestrian and evacuation dynamics. IEEE Transactions on Intelligent Transportation Systems.
Publicado
13/10/2025
TINOCO, Claudiney R.; TRAVENÇOLO, Bruno A. N.; MARTINS, Luiz G. A.; OLIVEIRA, Gina M. B.. Autonomous and Cooperative Pathfinding Technique for Swarms of Unmanned Aerial Vehicles in Dynamic Environments. In: CONCURSO DE TESES E DISSERTAÇÕES EM ROBÓTICA - CTDR (DOUTORADO) - SIMPÓSIO BRASILEIRO DE ROBÓTICA E SIMPÓSIO LATINO-AMERICANO DE ROBÓTICA (SBR/LARS), 16. , 2025, Vitória/ES. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 37-48. DOI: https://doi.org/10.5753/sbrlars_estendido.2025.248135.