Smart Plant: uma proposta de desenvolvimento saudável de plantas domésticas por meio de Internet Social das Coisas
Resumo
As fazendas verticais têm sido desenvolvidas como uma das técnicas de cultivo em ambiente urbano, compostos de ambiente tecnicamente monitorado. Em ambiente doméstico, a Internet das Coisas possibilita o monitoramento contínuo e individual de cada cultivo, além de permitir a automação de controle de variáveis de ambiente. No entanto, neste ambiente é reduzido o nível de conhecimento e controle sobre quais fatores podem melhorar o desenvolvimento saudável de cada planta. Este artigo apresenta uma espécie de rede social das plantas que troca informações sobre as condições de seu desenvolvimento, de forma colaborativa e automática, como uma alternativa distribuída para usar a estratégia mais adequada e eficiente para o seu desenvolvimento, com base no conhecimento gerado pelo grupo de plantas da mesma rede.
Referências
Batista, D. M., Goldman, A., Jr., R. H., Kon, F., Costa, F. M., and Endler, M. (2016). InterSCity: Addressing future internet research challenges for smart cities. In Online Proceedings. IEEE.
Belista, F. C. L., Go, M. P. C., Lucenara, L. L., Policarpio, C. J. G., Tan, X. J. M., and Baldovino, R. G. (2018). A smart aeroponic tailored for IoT vertical agriculture using network connected modular environmental chambers. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE.
Butt, M. F. U., Yaqub, R., Hammad, M., Ahsen, M., Ansir, M., and Zamir, N. (2019). Implementation of aquaponics within IoT framework. In 2019 SoutheastCon. IEEE.
Gill, H. K., Sehgal, V. K., and Verma, A. K. (2021). A context aware recommender system for predicting crop factors using LSTM. In 2021 Asian Conference on Innovation in Technology (ASIANCON). IEEE.
Jie Ong, Z., Keong Ng, A., and Ya Kyaw, T. (2019). Intelligent outdoor aquaponics with automated grow lights and internet of things. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE.
Kodali, R. K. and Valdas, A. (2018). MQTT based monitoring system for urban farmers using ESP32 and raspberry pi. In 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT). IEEE.
Leal, A. G., Santos, A. S. d., Noda, M. K., and Rocrigues, L. C. d. S. (2013). Internet social das coisas como agente agregador nas cidades inteligentes no brasil e no mundo. In III Congresso Internacional do Conhecimento e inovação. UFSC.
Mohd Ariffin, M. A., Ramli, M. I., Zainol, Z., Mohd Amin, M. N., Ismail, M., Adnan, R., Ahmad, N. D., Husain, N., and Jamil, N. (2021). Enhanced IoT-based climate control for oyster mush room cultivation using fuzzy logic approach and NodeMCU microcontroller. Pertanika J. Sci. Technol., 29(4).
Muladi, M., Bhimantoro, S., Aripriharta, A., Hadi, M. S., Mahamad, A. K. B., and Saon, S. B. (2021). IoT-based micro-hydroponic urban farming for economic healing during COVID19 pandemic. In 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE). IEEE.
Namgyel, T., Siyang, S., Khunarak, C., Pobkrut, T., Norbu, J., Chaiyasit, T., and Kerdcharoen, T. (2018). IoT based hydroponic system with supplementary LED light for smart home farming of lettuce. In 2018 15th Int.Conf.on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE.
Podder, A. K., Bukhari, A. A., Islam, S., Mia, S., Mohammed, M. A., Kumar, N. M., Cengiz, K., and Abdulkareem, K. H. (2021). Iot based smart agrotech system for verification of urban farming parameters. Microprocess. Microsyst., 82(104025):104025.
Rangarajan, A. K., Purushothaman, R., and Venkatesan, H. S. (2018). Evaluation of solanum melongena crop performance in artificial LED light source for urban farming. In 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on. IEEE.
S. Punla, C., https://orcid.org/0000-0002-1094-0018, cspunla@bpsu.edu.ph, C. Farro, R., https://orcid.org/0000-0002-3571-2716, rcfarro@bpsu.edu.ph, and Bataan Peninsula State University Dinalupihan, Bataan, Philippines (2022). Are we there yet?: An analysis of the competencies of BEED graduates of BPSU-DC. International Multidisciplinary Research Journal,4(3):50–59.
Saad, M. H. M., Hamdan, N. M., and Sarker, M. R. (2021). State of the art of urban smart vertical farming automation system: Advanced topologies, issues and recommendations. Electronics (Basel), 10(12):1422.
Stevens, J. D. and Shaikh, T. (2018). MicroCEA: Developing a personal urban smart farming device. In 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC). IEEE.
Sunehra, D. and Srinidhi, M. (2020). Implementation of smart urban farming using raspberry piarduino and node-RED platform. In 2020 IEEE International Conference for Innovation in Technology (INOCON). IEEE.
Tan, E.-K., Chong, Y.-W., Niswar, M., Ooi, B.-Y., and Basuki, A. (2020). An IoT platform for urban farming. In 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA). IEEE.
Tolentino, L. K. S., Fernandez, E. O., Jorda, R. L., Amora, S. N. D., Bartolata, D. K. T., Sarucam, J. R. V., Sobrepena, J. C. L., and Sombol, K. Y. P. (2019). Development of an IoT-based aquaponics monitoring and correction system with temperature-controlled greenhouse. In 2019 International SoC Design Conference (ISOCC). IEEE.