Protegendo Redes de Canais de Pagamento Sem Fio com Janelas de Tempo de Bloqueio Mínimas
Resumo
Redes de canais de pagamento (Payment Channel Networks - PCN) aumentam o impacto das criptomoedas, fornecendo uma solução rápida e independente de consenso para mitigar os problemas de escalabilidade dos protocolos tradicionais de correntes de blocos (blockchain). No entanto, as PCNs atuais são baseadas em nós robustos com alta disponibilidade e capacidade computacional, dificultando sua adoção em ambientes móveis e sem fio. Este artigo propõe uma arquitetura PCN híbrida que estende as funcionalidades das PCNs tradicionais para cenários de dispositivos sem fio com recursos limitados. O artigo analisa a vulnerabilidade de roubo de tokens e propõe uma contramedida com base em janelas de tempo de bloqueio. O artigo avalia a proposta com dados reais da Lightning Network e de redes de banda larga móvel. Os resultados mostram que a janela de tempo mínimo de bloqueio depende do tempo de inatividade dos dispositivos e que selecionar uma janela padrão é mais eficaz quando os dispositivos apresentam alta disponibilidade.
Palavras-chave:
blockchain, pcn, redes sem fio, canais de pagamento
Referências
Baltrunas, D., Elmokashfi, A., and Kvalbein, A. (2014). Measuring the reliability of mobile broadband networks. In 14th ACM IMC, pages 45–58.
Blockchain.com (2021). Blockchain charts. Disponível em: https://www.blockchain.com/charts. Acessado em 25/06/2021.
brainbot labs Est. (2020). The raiden network: Fast, cheap, scalable token transfers for ethereum. Disponível em: https://raiden.network/. Acessado em 25/06/2021.
Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., and Duarte, O. C. M. (2020). A secure personal-data trading system based on blockchain, trust, and reputation. In 3rd IEEE Blockchain, pages 379–384. IEEE.
Elmokashfi, A., Zhou, D., and Baltrünas, D. (2017). Adding the next nine: An investigation of mobile broadband networks availability. In 23rd ACM MobiCom, pages 88–100.
Erdin, E., Mercan, S., and Akkaya, K. (2021). An evaluation of cryptocurrency payment channel networks and their privacy implications. arXiv preprint arXiv:2102.02659.
Guo, Y., Tong, J., and Feng, C. (2019). A measurement study of bitcoin lightning network. In 2nd IEEE Blockchain, pages 202–211. IEEE.
Hannon, C. and Jin, D. (2019). Bitcoin payment-channels for resource limited iot devices. In IEEE COINS, pages 50–57.
Kurt, A., Mercan, S., Shlomovits, O., Erdin, E., and Akkaya, K. (2021). Lngate: Powering iot with next generation lightning micro-payments using threshold cryptography. arXiv preprint arXiv:2105.08902.
Lys, L., Micoulet, A., and Potop-Butucaru, M. (2020). Atomic cross chain swaps via relays and adapters. In 3rd CryBlock, pages 59–64.
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., and Ravi, S. (2017). Concurrency and privacy with payment-channel networks. In 2017 ACM SIGSAC CCS, pages 455–471.
Mercan, S., Erdin, E., and Akkaya, K. (2020). Improving sustainability of cryptocurrency payment networks for iot applications. In IEEE ICC Workshops, pages 1–6. IEEE.
Mizrahi, A. and Zohar, A. (2020). Congestion attacks in payment channel networks. arXiv preprint arXiv:2002.06564.
MME (2017). Anuário estatístico de energia elétrica 2017. Technical report, Ministério de Minas e Energia do Brasil. Disponível em: [link]. Acessado em 25/06/2021.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Disponível em: https://bitcoin.org/bitcoin.pdf. Acessado em 25/06/2021.
OECD (2021). Mobile broadband subscriptions indicator. Disponível em: https://doi.org/10.1787/1277ddc6-en. Acessado em 25/06/2021.
Poon, J. and Dryja, T. (2016). The bitcoin lightning network: Scalable offchain instant payments. Disponível em: [link]. Acessado em 25/06/2021.
Poon, J. and Osuntokun, O. (2021). BOLT #2: Peer protocol for channel management. Disponível em: https://doi.org/10.1787/1277ddc6-en. Acessado em 25/06/2021.
Rebello, G. A. F., Camilo, G. F., Guimarães, L. C., de Souza, L. A. C., and Duarte, O. C. M. (2020). On the security and performance of proof-based consensus protocols. In 4th CIoT, pages 67–74. IEEE.
Robert, J., Kubler, S., and Ghatpande, S. (2020). Enhanced lightning network (offchain)- based micropayment in iot ecosystems. Future Generation Computer Systems, 112:283–296.
Rohrer, E. and Tschorsch, F. (2020). Counting down thunder: Timing attacks on privacy in payment channel networks. In ACM AFT, pages 214–227.
Roos, S., Moreno-Sanchez, P., Kate, A., and Goldberg, I. (2017). Settling payments fast and private: Efficient decentralized routing for path-based transactions. arXiv preprint arXiv:1709.05748.
Sivaraman, V., Venkatakrishnan, S. B., Ruan, K., Negi, P., Yang, L., Mittal, R., Fanti, G., and Alizadeh, M. (2020). High throughput cryptocurrency routing in payment channel networks. In 17th USENIX NSDI, pages 777–796.
Tikhomirov, S., Pickhardt, R., Biryukov, A., and Nowostawski, M. (2020). Probing channel balances in the lightning network. arXiv preprint arXiv:2004.00333.
Tochner, S., Zohar, A., and Schmid, S. (2020). Route hijacking and dos in off-chain networks. In 2nd ACM AFT, page 228–240. ACM.
Blockchain.com (2021). Blockchain charts. Disponível em: https://www.blockchain.com/charts. Acessado em 25/06/2021.
brainbot labs Est. (2020). The raiden network: Fast, cheap, scalable token transfers for ethereum. Disponível em: https://raiden.network/. Acessado em 25/06/2021.
Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., and Duarte, O. C. M. (2020). A secure personal-data trading system based on blockchain, trust, and reputation. In 3rd IEEE Blockchain, pages 379–384. IEEE.
Elmokashfi, A., Zhou, D., and Baltrünas, D. (2017). Adding the next nine: An investigation of mobile broadband networks availability. In 23rd ACM MobiCom, pages 88–100.
Erdin, E., Mercan, S., and Akkaya, K. (2021). An evaluation of cryptocurrency payment channel networks and their privacy implications. arXiv preprint arXiv:2102.02659.
Guo, Y., Tong, J., and Feng, C. (2019). A measurement study of bitcoin lightning network. In 2nd IEEE Blockchain, pages 202–211. IEEE.
Hannon, C. and Jin, D. (2019). Bitcoin payment-channels for resource limited iot devices. In IEEE COINS, pages 50–57.
Kurt, A., Mercan, S., Shlomovits, O., Erdin, E., and Akkaya, K. (2021). Lngate: Powering iot with next generation lightning micro-payments using threshold cryptography. arXiv preprint arXiv:2105.08902.
Lys, L., Micoulet, A., and Potop-Butucaru, M. (2020). Atomic cross chain swaps via relays and adapters. In 3rd CryBlock, pages 59–64.
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., and Ravi, S. (2017). Concurrency and privacy with payment-channel networks. In 2017 ACM SIGSAC CCS, pages 455–471.
Mercan, S., Erdin, E., and Akkaya, K. (2020). Improving sustainability of cryptocurrency payment networks for iot applications. In IEEE ICC Workshops, pages 1–6. IEEE.
Mizrahi, A. and Zohar, A. (2020). Congestion attacks in payment channel networks. arXiv preprint arXiv:2002.06564.
MME (2017). Anuário estatístico de energia elétrica 2017. Technical report, Ministério de Minas e Energia do Brasil. Disponível em: [link]. Acessado em 25/06/2021.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Disponível em: https://bitcoin.org/bitcoin.pdf. Acessado em 25/06/2021.
OECD (2021). Mobile broadband subscriptions indicator. Disponível em: https://doi.org/10.1787/1277ddc6-en. Acessado em 25/06/2021.
Poon, J. and Dryja, T. (2016). The bitcoin lightning network: Scalable offchain instant payments. Disponível em: [link]. Acessado em 25/06/2021.
Poon, J. and Osuntokun, O. (2021). BOLT #2: Peer protocol for channel management. Disponível em: https://doi.org/10.1787/1277ddc6-en. Acessado em 25/06/2021.
Rebello, G. A. F., Camilo, G. F., Guimarães, L. C., de Souza, L. A. C., and Duarte, O. C. M. (2020). On the security and performance of proof-based consensus protocols. In 4th CIoT, pages 67–74. IEEE.
Robert, J., Kubler, S., and Ghatpande, S. (2020). Enhanced lightning network (offchain)- based micropayment in iot ecosystems. Future Generation Computer Systems, 112:283–296.
Rohrer, E. and Tschorsch, F. (2020). Counting down thunder: Timing attacks on privacy in payment channel networks. In ACM AFT, pages 214–227.
Roos, S., Moreno-Sanchez, P., Kate, A., and Goldberg, I. (2017). Settling payments fast and private: Efficient decentralized routing for path-based transactions. arXiv preprint arXiv:1709.05748.
Sivaraman, V., Venkatakrishnan, S. B., Ruan, K., Negi, P., Yang, L., Mittal, R., Fanti, G., and Alizadeh, M. (2020). High throughput cryptocurrency routing in payment channel networks. In 17th USENIX NSDI, pages 777–796.
Tikhomirov, S., Pickhardt, R., Biryukov, A., and Nowostawski, M. (2020). Probing channel balances in the lightning network. arXiv preprint arXiv:2004.00333.
Tochner, S., Zohar, A., and Schmid, S. (2020). Route hijacking and dos in off-chain networks. In 2nd ACM AFT, page 228–240. ACM.
Publicado
04/10/2021
Como Citar
REBELLO, Gabriel Antonio F.; POTOP-BUTUCARU, Maria; DE AMORIM, Marcelo Dias; DUARTE, Otto Carlos M. B..
Protegendo Redes de Canais de Pagamento Sem Fio com Janelas de Tempo de Bloqueio Mínimas. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 21. , 2021, Belém.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 295-308.
DOI: https://doi.org/10.5753/sbseg.2021.17323.