Modelagem de Aliciamento de Menores em Mensagens Instantâneas de Texto

  • Priscilla L. L. Santin PUCPR
  • Cinthia O. A. Freitas PUCPR
  • Emerson C. Paraíso PUCPR
  • Altair O. Santin PUCPR

Abstract


The approaches presented in the literature are not suitable for detection of children sexual grooming, because the proposals are usually limited to the identification of stages of communication between the predator and the victim. These approaches are inefficient due to the use of a unified profile to identify a sexual grooming stage. Our proposal takes into account the identification of the communication’s stage applying detached profiles, one for the victim and another for the predator. This approach, based on a stochastic technique (i.e. HMM), aims at the individual modeling of each profile to enhance the detection hit rate. The experiments achieved promising identification rates with results closer to 91%.

References

Grundy, W. N.. "Modeling Biological Sequences Using HTK". Technical Report, 1997.

Holsti, O. R.. "Content Analysis for the Social Sciences and Humanities". Addison-Wesley, 1969.

Ho, W. H.; Watters, P. A.. "Statistical and Structural Approaches to Filtering Internet Pornography". IEEE International Conference on Systems, Man and Cybernetics, 2004. p. 4792-4798.

HTK toolkit. Disponível em <http://htk.eng.cam.ac.uk/>. Acesso em 04 de junho de 2012.

Kontostathis, A.; Edwards, L.; Leatherman, A.. "ChatCoder: Toward the Tracking and Categorization of Internet Predators". Proceedings of 2009 Text Mining Workshop - Society for Industrial and Applied Mathematics International Conference on Data Mining, May 2009.

Kontostathis, A.; Edwards, L.; Bayzick, J.; McGhee, I.; Leatherman, A.; Moore, K.. "Comparison of Rule-based to Human Analysis of Chat Logs". International Workshop on Mining Social Media, November 2009.

Leatherman, A.. "Luring language and virtual victims: Coding cyber-predators online communicative behavior". Technical report of Ursinus College, 2009.

McGhee, I.; Bayzick, J.; Kontostathis, A.; Edwards, L.; McBride, A.; Jakubowski, E.. "Learning to Identify Internet Sexual Predation". International Journal of Electronic Commerce, 2011. Vol. 15, p. 103-122.

Michalopoulos, D.; Mavridis, I.. "Towards Risk Based Prevention of Grooming Attacks". International Conference on Security and Cryptography, July 26-28, 2010. p. 1-4.

National Center for Missing and Exploited Children. Disponível em <http://www.missingkids.com/en_US/documents/CyberTiplineFactSheet.pdf>. Acesso em 17 de fevereiro de 2012.

Olson, L. N.; Daggs, J. L.; Ellevold, B. L.; Rogers, T. K. K.. "Entrapping the Innocent: Toward a Theory of Child Sexual Predators"™ Luring Communication". Communication Theory, 2007. Vol. 17, p. 231-251.

Perverted Justice Foundation Incorporated. Disponível em <https://www.pervertedjustice.com>. Acesso em janeiro de 2012.

Rabiner, L.R.; Juang, B-H.. "Fundamentals of speech recognition". Prentice Hall Inc., Englewood Clifss, New Jersey, 1993.

Rabiner, L. R.. "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition". Proceedings of the IEEE, February, 1989. Vol. 77, No. 2, p.257-286.

Rashid, A.. "The Talk of Crime". Investigative Practice Journal, July 10, 2008. p. 28-29.

Szoke, I.. "Speech Units Automatically Generated by Ergodic Hidden Markov Model". Proceedings of 10th Conference and Competition Student EEICT, 2004. Vol. 1.
Published
2012-11-19
SANTIN, Priscilla L. L.; FREITAS, Cinthia O. A.; PARAÍSO, Emerson C.; SANTIN, Altair O.. Modelagem de Aliciamento de Menores em Mensagens Instantâneas de Texto. In: BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 12. , 2012, Curitiba. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2012 . p. 288-301. DOI: https://doi.org/10.5753/sbseg.2012.20553.

Most read articles by the same author(s)

1 2 3 > >>