The Importance of the Public Global Parameter on Ring-LWE problem-based Key Encapsulation Mechanims


There are cryptographic systems that are secure against attacks by both quantum and classical computers. Some of these cryptographic systems are the Key Encapsulation Mechanisms (KEM) based on Ring-LWE problem. Some Ring-LWE problem-based KEMs include a public global parameter that is random and uniformly chosen. This parameter is used to generatea public key using in the process one secret key. In this work, we analyze some values of the public global parameter that leak information about the secret key.

Palavras-chave: Ring-LWE, Ring-LWE KEMs, Information Leakage


Alkim, E., Avanzi, R. M., Bos, J. W., Ducas, L., de la Piedra, A., Pöppelmann, T., and Schwabe, P. (2017). Newhope algorithm specifications and supporting documentation.

Barreto, P. S., Longa, P., Naehrig, M., Ricardini, J. E., and Zanon, G. (2016). Sharper ring-lwe signatures. Cryptology ePrint Archive.

Bos, J. W., Costello, C., Naehrig, M., and Stebila, D. (2015). Post-quantum key exchange for the tls protocol from the ring learning with errors problem. In 2015 IEEE Symposium on Security and Privacy, pages 553–570. IEEE.

de Clercq, R., Roy, S. S., Vercauteren, F., and Verbauwhede, I. (2015). Efficient software implementation of ring-lwe encryption. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE ’15, page 339–344, San Jose, CA, USA. EDA Consortium.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive.

Lindner, R. and Peikert, C. (2011). Better key sizes (and attacks) for lwe-based encryption. In Kiayias, A., editor, Topics in Cryptology – CT-RSA 2011, pages 319–339, Berlin, Heidelberg. Springer Berlin Heidelberg.

Lyubashevsky, V., Peikert, C., and Regev, O. (2013). On ideal lattices and learning with errors over rings. J. ACM, 60(6).

Peikert, C. (2009). Public-key cryptosystems from the worst-case shortest vector problem: Extended abstract. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, page 333–342, New York, NY, USA. Association for Computing Machinery.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptography. volume 56, New York, NY, USA. Association for Computing Machinery.

Roy, S. S., Karmakar, A., and Verbauwhede, I. (2016). Ring-lwe: applications to cryptography and their efficient realization. In International conference on security, privacy, and applied cryptography engineering, pages 323–331. Springer.

Wu, Y., Huang, Z., Zhang, J., and Wen, Q. (2012). A lattice-based digital signature from the ring-lwe. In 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content, pages 646–651.
VILLENA, Reynaldo C.; TERADA, Routo. The Importance of the Public Global Parameter on Ring-LWE problem-based Key Encapsulation Mechanims. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 22. , 2022, Santa Maria. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 378-383. DOI:

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>