Evaluation and Mitigation of Adversarial Attacks on IoT Intrusion Detection Systems
Abstract
Security in IoT networks still faces limitations, especially when attacks target deep learning-based intrusion detection systems (IDS). In this work, four adversarial attack techniques were applied to CNN, LSTM and GRU models, and their accuracy was evaluated after malicious samples were inserted. In a second step, the models were retrained with these samples, learning to recognize the patterns of the attacks, which is an important step in mitigating this type of threat in IoT environments.References
Anthi, E., Williams, L., Javed, A., and Burnap, P. (2021). Hardening machine learning denial of service (dos) defences against adversarial attacks in iot smart home networks. Computers & Security, 108:102352.
Cavalcante, J., Barros, T. G., and de Souza, J. N. (2024). Autonomous network intrusion detection for resource-constrained devices of the internet of things. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg), pages 48–59. SBC.
da Silva, A. M. d. A., Bonfim, M. S., de Castro Callado, A., and Gonçalves, E. J. T. (2025). Detection and mitigation of attacks at the edge of iot networks using deep learning and p4. In Simpósio Brasileiro de Sistemas de Informação (SBSI), pages 595–604. SBC.
da Silva, G. H. E., Junior, G. F., and Zarpelao, B. B. (2024). Impacto de ataques de evasão e eficácia da defesa baseada em treinamento adversário em detectores de malware. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg), pages 829–835. SBC.
Dos Santos, B. V., Vergutz, A., Nogueira, M., and Macedo, R. T. (2022). Um método de ofuscação para proteger a privacidade no tráfego da rede iot. In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC).
Hussain, F., Hussain, R., Hassan, S. A., and Hossain, E. (2020). Machine learning in iot security: Current solutions and future challenges. IEEE Communications Surveys & Tutorials, 22(3):1686–1721.
Novaes, M. P., Carvalho, L. F., Lloret, J., and Proença Jr, M. L. (2021). Adversarial deep learning approach detection and defense against ddos attacks in sdn environments. Future Generation Computer Systems, 125:156–167.
Qin, Q., Poularakis, K., and Tassiulas, L. (2020). A learning approach with programmable data plane towards iot security. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pages 410–420. IEEE.
Reddy, S. S., Nishoak, K., Shreya, J., Reddy, Y. V., and Venkanna, U. (2024). A p4-based adversarial attack mitigation on machine learning models in data plane devices. Journal of Network and Systems Management, 32(1):5.
Saheed, Y. K., Abiodun, A. I., Misra, S., Holone, M. K., and Colomo-Palacios, R. (2022). A machine learning-based intrusion detection for detecting internet of things network attacks. Alexandria Engineering Journal, 61(12):9395–9409.
Cavalcante, J., Barros, T. G., and de Souza, J. N. (2024). Autonomous network intrusion detection for resource-constrained devices of the internet of things. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg), pages 48–59. SBC.
da Silva, A. M. d. A., Bonfim, M. S., de Castro Callado, A., and Gonçalves, E. J. T. (2025). Detection and mitigation of attacks at the edge of iot networks using deep learning and p4. In Simpósio Brasileiro de Sistemas de Informação (SBSI), pages 595–604. SBC.
da Silva, G. H. E., Junior, G. F., and Zarpelao, B. B. (2024). Impacto de ataques de evasão e eficácia da defesa baseada em treinamento adversário em detectores de malware. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg), pages 829–835. SBC.
Dos Santos, B. V., Vergutz, A., Nogueira, M., and Macedo, R. T. (2022). Um método de ofuscação para proteger a privacidade no tráfego da rede iot. In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC).
Hussain, F., Hussain, R., Hassan, S. A., and Hossain, E. (2020). Machine learning in iot security: Current solutions and future challenges. IEEE Communications Surveys & Tutorials, 22(3):1686–1721.
Novaes, M. P., Carvalho, L. F., Lloret, J., and Proença Jr, M. L. (2021). Adversarial deep learning approach detection and defense against ddos attacks in sdn environments. Future Generation Computer Systems, 125:156–167.
Qin, Q., Poularakis, K., and Tassiulas, L. (2020). A learning approach with programmable data plane towards iot security. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pages 410–420. IEEE.
Reddy, S. S., Nishoak, K., Shreya, J., Reddy, Y. V., and Venkanna, U. (2024). A p4-based adversarial attack mitigation on machine learning models in data plane devices. Journal of Network and Systems Management, 32(1):5.
Saheed, Y. K., Abiodun, A. I., Misra, S., Holone, M. K., and Colomo-Palacios, R. (2022). A machine learning-based intrusion detection for detecting internet of things network attacks. Alexandria Engineering Journal, 61(12):9395–9409.
Published
2025-09-01
How to Cite
SILVA, Antonia Mayara de A. da; REGO, Paulo Antonio Leal; BONFIM, Michel Sales.
Evaluation and Mitigation of Adversarial Attacks on IoT Intrusion Detection Systems. In: BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 25. , 2025, Foz do Iguaçu/PR.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 987-994.
DOI: https://doi.org/10.5753/sbseg.2025.11486.
