Avaliando Modelos de Graph Neural Networks para Detecção de Usuários Fraudulentos em e-Commerce
Resumo
Modelos baseados em grafos, Graph Neural Networks ou (GNN), vêm sendo empregados na detecção de fraudes no comércio eletrônico com resultados promissores. Neste trabalho foram avaliados modelos que utilizam classificação sobre os nós, baseados em informações da vizinhança, e o reconhecimento de comunidade, utilizando datasets reais. Os resultados demonstram que, embora promissores (acurácia variando de 50% a 86%), ainda é preciso estudar e investigá-los melhor para que possam, no futuro, atuarem em soluções anti-fraude.
Palavras-chave:
gnn, comércio eletrônico, fraude
Referências
ABCOMM (2020). O comércio eletrônico deve crescer 18% em 2020 e movimentar r$ 106 bilhões. https://bityli.com/3DjEH.
Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., and Qi, Y. (2019). Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. Proceedings of the AAAI Conference on Articial Intelligence, 33(01):946–953.
Kipf, T. N. and Welling, M. (2017). Semi-supervised classication with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26. OpenReview.net.
Li, A., Qin, Z., Liu, R., Yang, Y., and Li, D. (2019). Spam review detection with graph convolutional networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM.
LIU, Z., CHEN, C., YANG, X., ZHOU, Junand LI, X., and SONG, L. (2018). Heterogeneous graph neural networks for malicious account detection. In 27th ACM International Conference On Information And Knowledge Management, pages 2077–2085.
Liu, Z., Dou, Y., Yu, P. S., Deng, Y., and Peng, H. (2020). Alleviating the inconsistency problem of applying graph neural network to fraud detection. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20, page 1569–1572, New York, NY, USA. ACM.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80.
Velickovíc, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings. OpenReview.net.
Wang, J., Wen, R., Wu, C., Huang, Y., and Xion, J. (2019). Fdgars: Fraudster detection via graph convolutional networks in online app review system. In Companion Proceedings of The 2019 World Wide Web Conference, WWW ’19, page 310–316, New York, NY, USA. ACM.
Wardhani, N. W. S., Rochayani, M. Y., Iriany, A., Sulistyono, A. D., and Lestantyo, P. (2019). Cross-validation metrics for evaluating classication performance on imbalanced data. In 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pages 14–18.
Zeng, Y. and Tang, J. (2021). Rlc-gnn: An improved deep architecture for spatial-based graph neural network with application to fraud detection. Applied Sciences, 11(12).
Zhang, Y., Fan, Y., Ye, Y., Zhao, L., and Shi, C. (2019). Key player identication in underground forums over attributed heterogeneous information network embedding framework. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, page 549–558, New York, NY, USA. ACM.
Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., and Qi, Y. (2019). Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. Proceedings of the AAAI Conference on Articial Intelligence, 33(01):946–953.
Kipf, T. N. and Welling, M. (2017). Semi-supervised classication with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26. OpenReview.net.
Li, A., Qin, Z., Liu, R., Yang, Y., and Li, D. (2019). Spam review detection with graph convolutional networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM.
LIU, Z., CHEN, C., YANG, X., ZHOU, Junand LI, X., and SONG, L. (2018). Heterogeneous graph neural networks for malicious account detection. In 27th ACM International Conference On Information And Knowledge Management, pages 2077–2085.
Liu, Z., Dou, Y., Yu, P. S., Deng, Y., and Peng, H. (2020). Alleviating the inconsistency problem of applying graph neural network to fraud detection. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20, page 1569–1572, New York, NY, USA. ACM.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80.
Velickovíc, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings. OpenReview.net.
Wang, J., Wen, R., Wu, C., Huang, Y., and Xion, J. (2019). Fdgars: Fraudster detection via graph convolutional networks in online app review system. In Companion Proceedings of The 2019 World Wide Web Conference, WWW ’19, page 310–316, New York, NY, USA. ACM.
Wardhani, N. W. S., Rochayani, M. Y., Iriany, A., Sulistyono, A. D., and Lestantyo, P. (2019). Cross-validation metrics for evaluating classication performance on imbalanced data. In 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pages 14–18.
Zeng, Y. and Tang, J. (2021). Rlc-gnn: An improved deep architecture for spatial-based graph neural network with application to fraud detection. Applied Sciences, 11(12).
Zhang, Y., Fan, Y., Ye, Y., Zhao, L., and Shi, C. (2019). Key player identication in underground forums over attributed heterogeneous information network embedding framework. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, page 549–558, New York, NY, USA. ACM.
Publicado
04/10/2021
Como Citar
SILVA, Larissa de Andrade; FEITOSA, Eduardo L..
Avaliando Modelos de Graph Neural Networks para Detecção de Usuários Fraudulentos em e-Commerce. In: WORKSHOP DE TRABALHOS DE INICIAÇÃO CIENTÍFICA E DE GRADUAÇÃO - SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 21. , 2021, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 280-287.
DOI: https://doi.org/10.5753/sbseg_estendido.2021.17361.