Modelagem das Áreas de Risco de Sistemas de Detecção de Intrusão para Cálculo de Métricas de Privacidade

  • Jessica Yumi Nakano Sato USP
  • Daniel Macêdo Batista USP

Abstract


Although recent regulations require software developers to become severely concerned about privacy, recommendations related to this have been around for years. Despite the relatively old understanding that computational systems need to guarantee the user’s privacy, it has been difficult to find works that evaluate the regulations in existing systems, mainly because privacy metrics vary with the application domain. This paper presents preliminary results from the modeling of risk areas aiming to measure privacy metrics of an IDS based on machine learning. It is shown that it was possible to adapt the principles of the literature to our domain.

References

Agarwal, S. (2016). Developing a Structured Metric to Measure Privacy Risk in Privacy Impact Assessments, pages 141–155. Springer International Publishing, Cham.

Arbex, G. V., Machado, K. G., Nogueira, M., Batista, D. M., and Hirata, R. (2021). IoT DDoS Detection Based on Stream Learning. In 12th NoF.

Elias, E. M. d., Carriel, V. S., De Oliveira, G. W., Dos Santos, A. L., Nogueira, M., Junior, R. H., and Batista, D. M. (2022). A Hybrid CNN-LSTM Model for IIoT Edge Privacy-Aware Intrusion Detection. In 14th IEEE LATINCOM.

Iwaya, L. H., Babar, M. A., and Rashid, A. (2023). Privacy Engineering in the Wild: Understanding the Practitioners’ Mindset, Organisational Aspects, and Current Practices. IEEE Transactions on Software Engineering, pages 1–26.

Kioskli, K., Dellagiacoma, D., Fotis, T., and Mouratidis, H. (2022). The Supply Chain of a Living Lab: Modelling Security, Privacy, and Vulnerability Issues alongside with their Impact and Potential Mitigation Strategies. JoWUA, 13(2):147–182.

Mosaiyebzadeh, F., Pouriyeh, S., Parizi, R. M., Sheng, Q. Z., Han, M., Zhao, L., Sannino, G., Ranieri, C. M., Ueyama, J., and Batista, D. M. (2023). Privacy-Enhancing Technologies in Federated Learning for the Internet of Healthcare Things: A Survey. Electronics, 12(12).

Mouratidis, H. and Giorgini, P. (2007). Secure Tropos: A Security-Oriented Extension of the Tropos Methodology. IJSEKE, 17.

Silva, L. and França, R. (2023). Educação para a Cidadania Digital: Um mapeamento sobre as práticas de ensino para promover a segurança e a privacidade de dados. In XXXI WEI, pages 533–544. SBC.

Wagner, I. and Eckhoff, D. (2018). Technical Privacy Metrics. ACM Computing Surveys, 51(3):1–38.
Published
2023-09-18
SATO, Jessica Yumi Nakano; BATISTA, Daniel Macêdo. Modelagem das Áreas de Risco de Sistemas de Detecção de Intrusão para Cálculo de Métricas de Privacidade. In: WORKSHOP ON SCIENTIFIC INITIATION AND UNDERGRADUATE WORKS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 23. , 2023, Juiz de Fora/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 261-266. DOI: https://doi.org/10.5753/sbseg_estendido.2023.233937.

Most read articles by the same author(s)

1 2 > >>