APKAnalyzer: Multi-View and Multi-Objective Feature Selection-Based Android Malware Classification Tool

  • Philipe Fransozi PUCPR
  • Jhonatan Geremias PUCPR
  • Eduardo K. Viegas PUCPR
  • Altair O. Santin PUCPR

Abstract


With the widespread use of the Android operating system, developing new techniques to address the increasing number of malicious applications for this platform has become a significant challenge. This article proposes an Android malware classification tool called APKAnalyzer, which employs three machine learning models for classification. The application’s behavioral feature vector is refined using multi-view techniques, made feasible through multi-objective feature selection. This ensures that only features that improve accuracy and reduce inference time are used in model training.

References

Allix, K., Bissyandé, T. F., Klein, J., and Traon, Y. L. (2016). Androzoo: Collecting millions of android apps for the research community. 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), pages 468–471.

AndroidStats. Android statistics (2024). [link]. [online: acessado em 02-junho-2024].

Darwaish, A. and Nait-Abdesselam, F. (2020). Rgb-based android malware detection and classification using convolutional neural network. In IEEE Global Communications Conference.

dos Santos, R. R., Viegas, E. K., and Santin, A. O. (2021). A reminiscent intrusion detection model based on deep autoencoders and transfer learning. In 2021 IEEE Global Communications Conference (GLOBECOM). IEEE.

dos Santos, R. R., Viegas, E. K., Santin, A. O., and Tedeschi, P. (2023). Federated learning for reliable model updates in network-based intrusion detection. Computers amp; Security, 133:103413.

Geremias, J., Viegas, E. K., Santin, A. O., Britto, A., and Horchulhack, P. (2022). Towards multi-view android malware detection through image-based deep learning. In 2022 International Wireless Communications and Mobile Computing (IWCMC). IEEE.

Geremias, J., Viegas, E. K., Santin, A. O., Britto, A., and Horchulhack, P. (2023). Towards a reliable hierarchical android malware detection through image-based cnn. In 2023 IEEE 20th Consumer Communications amp; Networking Conference (CCNC). IEEE.

Horchulhack, P., Viegas, E. K., Santin, A. O., Ramos, F. V., and Tedeschi, P. (2024). Detection of quality of service degradation on multi-tenant containerized services. Journal of Network and Computer Applications, 224:103839.

Kaspersky. Attacks on mobile devices significantly increase in 2023. [link]. [online: acessado em 02-junho-2024].

Martín, A., Lara-Cabrera, R., and Camacho, D. (2019). Android malware detection through hybrid features fusion and ensemble classifiers: The andropytool framework and the omnidroid dataset. Information Fusion, 52:128–142.

Smith, M. R., Johnson, N. T., Ingram, J. B., Carbajal, A. J., Haus, B. I., Domschot, E., Ramyaa, R., Lamb, C. C., Verzi, S. J., and Kegelmeyer, W. P. (2020). Mind the gap: On bridging the semantic gap between machine learning and malware analysis. In Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, CCS ’20. ACM.
Published
2024-09-16
FRANSOZI, Philipe; GEREMIAS, Jhonatan; VIEGAS, Eduardo K.; SANTIN, Altair O.. APKAnalyzer: Multi-View and Multi-Objective Feature Selection-Based Android Malware Classification Tool. In: TOOLS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 24. , 2024, São José dos Campos/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 81-88. DOI: https://doi.org/10.5753/sbseg_estendido.2024.243326.

Most read articles by the same author(s)

1 2 3 > >>