Identificação dos Fatores que Influenciam a Evasão em Cursos de Graduação Através de Sistemas Baseados em Mineração de Dados: Uma Abordagem Quantitativa

  • Laci M. Barbosa Manhães UFRJ
  • Sérgio M. Serra da Cruz UFRRJ
  • Raimundo J. Macário Costa UFRJ
  • Jorge Zavaleta UFRJ
  • Geraldo Zimbrão UFRJ

Resumo


Este artigo utiliza técnicas de mineração de dados para identificar problemas relacionados com alunos que não conseguem completar os seus cursos de graduação. Nessa abordagem, a classificação manipula informações acadêmicas de alunos oriundos de uma grande Universidade Federal Brasileira. Muitas técnicas de mineração de dados foram avaliadas em função da acurácia obtida quando aplicadas a um conjunto de dados dos estudantes universitários. Os resultados demonstram que, mesmo analisando três diferentes classes de alunos, foi possível ter uma precisão global acima de 80%. O modelo Naive Bayes foi usado para visualizar os fatores de que distinguem os alunos que obtêm sucesso ou fracasso em seus cursos.
Palavras-chave: Identificação, Evasão, Mineração de Dados

Referências

Baker, R. and Yacef K. (2009) “The State of Educational Data Mining in 2009: A Review and Future Visions.” Pages 3-17. JEDM -Journal of Educational Data Mining, 2009, Volume 1, Issue 1, October 2009.

Baker, R., Isotani, S. e Carvalho, A. (2011) Mineração de Dados Educacionais: Oportunidades para o Brasil. Revista Brasileira de Informática na Educação, 19(2), 3-13. http://dx.doi.org/10.5753/RBIE.2011.19.02.03

Barroso, M. F. e Falcão, E. B. M. (2004) “Evasão Universitária: O Caso do Instituto de Física da UFRJ”, IX Encontro Nacional de Pesquisa em Ensino de Física.

Bouckaert R., Eibe F., Mark Hall, Kirkby, R., Reutemann, P., Seewald, A., and Scuse, D. (2010) “WEKA Manual for Version 3-6-4”. December.

Castro F. et al. (2007) “Applying Data Mining Techniques to e-Learning Problems, Studies in Computational Intelligence (SCI).” 62, 183 - 221 (2007) Springer-Verlag Berlin Heidelberg.

Davies, P. (1997) “Within our control?: Improving retention rates” in FE, FEDA.

Dekker G., Pechenizkiy M. and Vleeshouwers J. (2009) “Predicting Students Drop Out: A Case Study”. In Proceedings of the International Conference on Educational Data Mining, Cordoba, Spain, T. BARNES, M. DESMARAIS, C. ROMERO and S. VENTURA Eds., Pages 41-50.

Governo Federal (2007) “Diretrizes Gerais do Programa de Apoio a Planos de Reestruturação e Expansão das Universidades Federais – REUNI”, http://portal.mec.gov.br/sesu/arquivos/pdf/diretrizesreuni.pdf, Fevereiro.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten. I.H. (2009) “The WEKA Data Mining Software: An Update” SIGKDD Explorations, Volume 11, Issue 1.

Hämäläinen, W., Suhonen, J., Sutinen, E., and Toivonen, H. (2004) “Data mining in personalizing distance education courses”. In world conference on open learning and distance education, Hong Kong, pp. 1–11

Han, J. and Kamber, M. (2006), Data Mining Concepts and Techniques, Morgan Kauffmann Publishers, Second Edition.

INEP - Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (2009) “Investimentos Públicos em Educação”, http://portal.inep.gov.br/estatisticas-gastoseducacao e “Censo da Educação Superior’, http://portal.inep.gov.br, Outubro.

Johnston V. (1997) “Why do first year students fail to progress to their second year? An academic staff perspective.” Department of Mathematics, Napier University. Paper presented at the British Educational Research Association Annual Conference. September 11-14: University of York.

Kotsiantis, S., Pierrakeas, C. e Pintelas, P., (2003) “Preventing student dropout in distance learning using machine learning techniques.” KES, eds. V. Palade, R. Howlett & L. Jain, Springer, volume 2774 of Lecture Notes in Computer Science, pp. 267–274

Minaei-Bidgoli, B., Tan, P., Kortemeyer G. e Punch, W.F. (2006) “Association analysis for a web-based educational system.” Livro Data Mining in E-Learning. WitPress. Southampton, Boston.

Moore, R. (1995) “Retention rates research project” final report, Sheffield Hallam University.

Saraiva, S. e Masson. M. (2003) “Evasão e Permanência em uma Instituição de Tradição: um estudo sobre o processo de evasão de estudantes em cursos de Engenharia na Escola Politécnica da UFRJ”, Relatório de Pesquisa.

Soares, I. S. (2006) “Evasão, retenção e orientação acadêmica: UFRJ – Engenharia de Produção – Estudo de Caso”. Anais do XXXIV Congresso Brasileiro de Ensino de Engenharia - COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo.

Sumathi, S. and Sivanandam, S.N. (2006). “Introduction to Data Mining and its Applications”. Springer-Verlag Berlin Heidelberg 2006.

Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B.,Yu, P., Zhou, Z., Steinbach, M., Hand, D. and Steinberg, D. (2008) Top 10 algorithms in data mining. Journal of Knowledge and Information Systems. Springer London. page 1-37. vol. 14, Issue 1.
Publicado
16/05/2012
MANHÃES, Laci M. Barbosa; DA CRUZ, Sérgio M. Serra; COSTA, Raimundo J. Macário; ZAVALETA, Jorge; ZIMBRÃO, Geraldo. Identificação dos Fatores que Influenciam a Evasão em Cursos de Graduação Através de Sistemas Baseados em Mineração de Dados: Uma Abordagem Quantitativa. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 8. , 2012, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2012 . p. 284-295. DOI: https://doi.org/10.5753/sbsi.2012.14413.