ESMeRA: a computational model to support Experience Sampling Method (ESM) real-time application


Context: Technological transformations drive the growth of online classrooms and present both opportunities and challenges for understanding students’ experiences in the learning process. The Experience Sampling Method (ESM) allows capturing these experiences as they occur and can be used to understand better the factors that influence the learning process. Problem: Although the ESM has advantages compared to other collection methods, such as reducing cognitive bias, it is still not widespread in the Education area. In addition, it was observed in the literature the lack of tools to support the application of the ESM. Solution: The article presents a computational model named ESMeRA to aid in applying the ESM. The model includes aspects to provide computational support for the preparation, collection, and analysis of the experiences collected from the participants. IS Theory: The work was carried out following the Design Theory. Also, the foundations of the Unified Theory of Acceptance and Use of Technology (UTAUT) were mainly employed to evaluate the artifact's user intent. Method: This work adopted the Design Science Research (DSR) method. A literature review on ESM allowed the problem awareness, and a prototype of the artifact was developed and positively evaluated by five experts. Contributions and Impact in the IS area: The contribution of this work is twofold. First, the developed model can feasibly support applying the ESM to collect students’ experiences. The practicality of the model also helps disseminate the method. Second, the work aims to address the IS challenge of understanding the students’ experiences in their learning process.
Palavras-chave: Learning experience, Student experience, Experience sampling method, Design Science Research, Unified Theory of Acceptance and Use of Technology, Monitoring learning experience, Real-time analytics


Daniel J. Beal. 2015. ESM 2.0: State of the Art and Future Potential of Experience Sampling Methods in Organizational Research. Annual Review of Organizational Psychology and Organizational Behavior 2, 1(2015), 383–407. arXiv:

Eva Susann Becker, Thomas Goetz, Vinzenz Morger, and John Ranellucci. 2014. The importance of teachers’ emotions and instructional behavior for their students’ emotions – An experience sampling analysis. Teaching and Teacher Education 43 (2014), 15–26.

Patrick N. Beymer, Joshua M. Rosenberg, and Jennifer A. Schmidt. 2020. Does choice matter or is it all about interest? An investigation using an experience sampling approach in high school science classrooms. Learning and Individual Differences 78 (2020), 101812.

Euan Bonner, Kevin Garvey, Matthew Miner, Sam Godin, and Hayo Reinders. 2022. Measuring real-time learner engagement in the Japanese EFL classroom. Innovation in Language Learning and Teaching 0, 0 (2022), 1–11. arXiv:

Brasil. 2018. Lei nº 13.709, de 14 de agosto de 2018. Diário Oficial [da] República Federativa do Brasil (2018).

Isabel Cafezeiro, José Viterbo, Leonardo Cruz da Costa, Luciana Salgado, Marcelo Rocha, and Rodrigo Salvador Monteiro. 2017. Strengthening of the Sociotechnical Approach in Information Systems Research. In I GranDSI-BR – Grand Research Challenges in Information Systems in Brazil 2016-2026, R. M.; Maciel R. S. P. Boscarioli, C.; Araujo (Ed.). Special Committee on Information Systems (CE-SI). Brazilian Computer Society (SBC), Chapter 11, 133–147.

Mihaly Csikszentmihalyi. 2014. Flow and the Foundations of Positive Psychology (1 ed.). Springer, Dordrecht.

ABED – Associação Brasileira de Educação a Distância. 2021. Censo Ead.Br: Relatório Analítico Da Aprendizagem A Distância No Brasil 2019/2020. InterSaberes.

Aline Dresch, Daniel Pacheco Lacerda, and José Antonio Valle Antunes Junior. 2020. Design science research: método de pesquisa para avanço da ciência e tecnologia. Bookman, Porto Alegre. 

Rosemary Francisco. 2020. Experience Sampling Method (ESM). In JAQUES, Patrícia Augustin; SIQUEIRA; Sean; BITTENCOURT, Ig; PIMENTEL, Mariano. (Org.) Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa. Porto Alegre. SBC.

Tapiwa Gundu. 2020. Smart Locker System Acceptance for Rural Last-Mile Delivery. In 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). 1–7.

Wilhelm Hofmann and Paresh V. Patel. 2015. SurveySignal: A Convenient Solution for Experience Sampling Research Using Participants’ Own Smartphones. Social Science Computer Review 33, 2 (2015), 235–253. arXiv:

Katie M Lawson. 2021. Women's Daily Performance, Enjoyment, and Comfort in Male-Dominated Majors: The Role of Social Interactions in Classes. Research in Higher Education 62, 4 (2021), 478–497.

Yufeng Liu, Tongsheng Liu, and Qiaoyun Ma. 2022. Immersive Virtual Reality Teaching in Colleges and Universities Based on Vision Sensors. Wireless Communications and Mobile Computing 2022 (2022).

Anni Loukomies and Kalle Juuti. 2021. Primary Students’ Experiences of Remote Learning during COVID-19 School Closures: A Case Study of Finland. Education Sciences 11, 9 (2021), 560.

Jakob Nielsen and Thomas K. Landauer. 1993. A Mathematical Model of the Finding of Usability Problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems (Amsterdam, The Netherlands) (CHI ’93). Association for Computing Machinery, New York, NY, USA, 206–213.

Katariina Salmela-Aro, Katja Upadyaya, Patricio Cumsille, Jari Lavonen, Beatrice Avalos, and Jacquelynne Eccles. 2021. Momentary task-values and expectations predict engagement in science among Finnish and Chilean secondary school students. International Journal of Psychology 56, 3 (2021), 415–424. arXiv:

Ulrich Schiefele and Mihaly Csikszentmihalyi. 1994. Interest and the quality of experience in classrooms. European Journal of Psychology of Education 9, 3 (1994), 251–269.

Software IBM SPSS. 2022. SPSS. Accessed: 2022-01-30.

Mplus Team. 2022. The Mplus Modeling Framework. Accessed: 2022-01-30.

Paco Core Team. 2022. The Personal Analytics Companion. Accessed: 2022-01-30.

R Core Team. 2022. R. Accessed: 2022-01-30.
Como Citar

Selecione um Formato
EICH, Luís Guilherme; MÜLLER, Lucas Schneider; FRANCISCO, Rosemary; BARBOSA, Jorge Luis Victória. ESMeRA: a computational model to support Experience Sampling Method (ESM) real-time application. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 18. , 2022, Curitiba. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 .