Turnover Management Method Based in Predictive Analysis
Resumo
Context: IT companies struggle with the high statistics of job rotation every year. The high employee turnover in Brazilian software development companies hampers the execution of long-term strategic planning, as well as hinders new business opportunities and software projects due to the loss of intellectual capital. Problem: This article aimed to investigate the turnover data of an IT company in Brazil, and develop a data-driven method to predict voluntary turnover, to opportunize the company to act to minimize it. Solution: We propose a turnover management process, supported by a predictive model using artificial intelligence (AI). IS Theory: Contingency Theory, TAM(Technology Acceptance Model), Knowledge Management, and Organizational Justice are some of the most relevant theories in the relationship between Information Systems (IS) and turnover. Propper management policies can improve communication, engagement, and organizational justice — factors that have a direct impact on employee retention, as showed in this study. Method: The research is prescriptive in nature, and its evaluation was conducted through a case study. The results were analyzed using a qualitative approach. Summary of Results: the feasibility of applying the proposed process has been confirmed according to each stage of the turnover management process and the results obtained. Contributions and Impact on the IS Field: The primary contribution of this work is to assist companies in developing strategies for effective turnover management to minimize it, using a process based on a predictive model supported by AI.
Palavras-chave:
Turnover, Information Technology, Human Resources Management, Artificial Intelligence
Referências
Martinho Isnard Ribeiro de Almeida, Maria Luiza Mendes Teixeira, and Dante Pinheiro Martinelli. 1993. Por que administrar estrategicamente recursos humanos? Revista de Administração de Empresas 33 (1993), 12–24.
Narallynne Araújo, Tiago Massoni, Camila Sarmento, Francielle Santos, and Ruan Oliveira. 2022. Investigating the relationship between software team leadership styles and turnover intention. In Proceedings of the XXXVI Brazilian Symposium on Software Engineering. 106–111.
Dan Avrahami, Dana Pessach, Gonen Singer, and Hila Chalutz Ben-Gal. 2022. A human resources analytics and machine-learning examination of turnover: implications for theory and practice. International Journal of Manpower 43, 6 (2022), 1405–1424.
Monalessa Barcellos, Gleison Santos, Tayana Conte, Bianca Trinkenreich, and Patricia Matsubara. 2022.organizing Empirical Studies as Learning Iterations in Design Science Research Projects. In Proceedings of the XXI Brazilian Symposium on Software Quality. 1–10.
Tim Brown and Barry Katz. 2011. Change by design. Journal of product innovation management 28, 3 (2011), 381–383.
Michelle Larissa Luciano Carvalho, Paulo da Silva Cruz, Eduardo Santana de Almeida, Paulo Anselmo da Mota Silveira Neto, and Rafael Prikladnicki. 2024. Please do not go: understanding turnover of software engineers from different perspectives. arXiv:2407.00273 [cs.SE] [link]
I CHIAVENATO. 2014. Gestão de pessoas: o novo papel dos recursos humanos nas organizações. Manole. (book).
CNN. 2021. Procura por profissionais de tecnologia cresce 671% durante a pandemia. Retrieved July 20, 2023 from [link]
Luiz Alexandre Costa, Edson Dias, Danilo Monteiro Ribeiro, Awdren Fontão, Gustavo Pinto, Rodrigo Pereira dos Santos, and Alexander Serebrenik. 2024. An Actionable Framework for Understanding and Improving Talent Retention as a Competitive Advantage in IT Organizations. arXiv:2402.01573 [cs.SE] [link]
A. B. P. F. da. CRUZ. 2019. Identificação Organizacional, Intenção de Turnover e Satisfação com os Papéis de Vida: Estudo com uma Amostra da Geração dos Millennials no Setor Tecnológico. Ph.D. Dissertation. Universidade de Lisboa, Lisboa, PT.
Aline Gonçalves De Miranda, Adriana Chaves Andrade, Edinéia Dos Santos, Reginaldo Moreno, and Vanessa Gonçalves Luchetta. 2017. A IMPORTÂNCIA DA GESTÃO DO TURNOVER. Revista Maiêutica, Indaial, 5, 1 (2017), 105–116. issn=2525-8346.
Amanda Enander and José Cardoso. 2020. How is employee turnover related to employee retention? A systematic review on two sets of meta-analyses. (2020).
Alessandra Flávia da Silva Ferreira. 2022. Turnover e o custo da rotatividade: um estudo de caso em uma startup de tecnologia no Estado do Rio Grande do Norte.
Guilherme Luiz Frufrek and Luciano Tadeu Esteves Pansanato. 2015. Employee turnover: An analysis of Brazilian software development professionals. In 8th IADIS International Conference on Information Systems, IS 2015. 145–152.
Bruna Guimarães Gupy. 2022. Saiba como calcular o custo do turnover de forma simples. Disponível em: [link]. Acesso em: 20 Julho 2023.
Mariana Dias Gupy. 2023. Turnover: o que é, como calcular e qual o impacto da rotatividade na empresa. Disponível em: [link]. Acesso em 10 Junho 2023.
Sebastian Kaiser. 2019. The difference between Design Thinking & Design Science. Disponível em: [link]. Acesso em 12 Agosto 2023.
B. MACEDO. 2022. Setor de tecnologia cresce mais de 60% durante a pandemia, aponta estudo. Retrieved July 20, 2023 from [link]
Philipp Offermann, Olga Levina, Marten Schönherr, and Udo Bub. 2009. Outline of a design science research process. In Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology. 1–11.
Henry Ongori. 2007. A review of the literature on employee turnover. Academic Journals, [link] (2007).
Glaucia Jardim Pissinelli, Leonardo Tomazelli Duarte, and Cristiano Torezzan. [n. d.]. UM MODELO DE REGRESS AO LOGÍSTICA MULTIPLA PARA PREDIC AO DE TURNOVER–UMA APLICAC AO EM PEOPLE ANALYTICS.
PRICEWATERHOUSECOOPERS. 2017. Workforce of the future. The competing forces shaping 2030. Retrieved Mar 2, 2024 from [link]
Evy Rombaut and Marie-Anne Guerry. 2018. Predicting voluntary turnover through human resources database analysis. Management Research Review 41, 1 (jan 2018), 96–112. DOI 10.1108/MRR-04-2017-0098.
Aline Cavalcante Santana, Cleyton Mário de Oliveira Rodrigues, Ivaldir Honório de Farias Junior, and Wylliams Barbosa Santos. 2023. OntoTurnover:: A Lightweight Domain Ontology for Modeling Employee Turnover. In 2023 18th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 1–4.
Anton F. Schlechter, Chantal Syce, and Mark Bussin2. 2016. Predicting voluntary turnover in employees using demographic characteristics: A South African case study. Acta Commercii - Independent Research Journal in the Management Sciences (jan 2016), 1–10. ISSN: (Online) 1684-1999, (Print) 2413-1903.
Sharecare. 2020. Modelagem preditiva: o que é, para que serve e como implementar? Disponível em: [link]. Acesso em 6 Julho 2023.
Lynn McFarlane Shore and Harry J Martin. 1989. Job satisfaction and organizational commitment in relation to work performance and turnover intentions. Human relations 42, 7 (1989), 625–638.
Cibele Cardoso da Silveira. 2011. Análise de turnover na química Brasil LTDA. [link]
Godwin J Udo, Tor Guimaraes, and Magid Igbaria. 1997. An investigation of the antecedents of turnover intention for manufacturing plant managers. International Journal of Operations & Production Management 17, 9 (1997), 912–930.
Yue Zhao, Maciej Hryniewicki, Francesca Cheng, Boyang Fu, and Xiaoyu Zhu. 2018. Employee Turnover Prediction with Machine Learning: A Reliable Approach. In Conference: 2018 Intelligent System Conference (Intellisys), IEEEAt: London, UK. 737–758. DOI: 10.1007/978-3-030-01057-7
Narallynne Araújo, Tiago Massoni, Camila Sarmento, Francielle Santos, and Ruan Oliveira. 2022. Investigating the relationship between software team leadership styles and turnover intention. In Proceedings of the XXXVI Brazilian Symposium on Software Engineering. 106–111.
Dan Avrahami, Dana Pessach, Gonen Singer, and Hila Chalutz Ben-Gal. 2022. A human resources analytics and machine-learning examination of turnover: implications for theory and practice. International Journal of Manpower 43, 6 (2022), 1405–1424.
Monalessa Barcellos, Gleison Santos, Tayana Conte, Bianca Trinkenreich, and Patricia Matsubara. 2022.organizing Empirical Studies as Learning Iterations in Design Science Research Projects. In Proceedings of the XXI Brazilian Symposium on Software Quality. 1–10.
Tim Brown and Barry Katz. 2011. Change by design. Journal of product innovation management 28, 3 (2011), 381–383.
Michelle Larissa Luciano Carvalho, Paulo da Silva Cruz, Eduardo Santana de Almeida, Paulo Anselmo da Mota Silveira Neto, and Rafael Prikladnicki. 2024. Please do not go: understanding turnover of software engineers from different perspectives. arXiv:2407.00273 [cs.SE] [link]
I CHIAVENATO. 2014. Gestão de pessoas: o novo papel dos recursos humanos nas organizações. Manole. (book).
CNN. 2021. Procura por profissionais de tecnologia cresce 671% durante a pandemia. Retrieved July 20, 2023 from [link]
Luiz Alexandre Costa, Edson Dias, Danilo Monteiro Ribeiro, Awdren Fontão, Gustavo Pinto, Rodrigo Pereira dos Santos, and Alexander Serebrenik. 2024. An Actionable Framework for Understanding and Improving Talent Retention as a Competitive Advantage in IT Organizations. arXiv:2402.01573 [cs.SE] [link]
A. B. P. F. da. CRUZ. 2019. Identificação Organizacional, Intenção de Turnover e Satisfação com os Papéis de Vida: Estudo com uma Amostra da Geração dos Millennials no Setor Tecnológico. Ph.D. Dissertation. Universidade de Lisboa, Lisboa, PT.
Aline Gonçalves De Miranda, Adriana Chaves Andrade, Edinéia Dos Santos, Reginaldo Moreno, and Vanessa Gonçalves Luchetta. 2017. A IMPORTÂNCIA DA GESTÃO DO TURNOVER. Revista Maiêutica, Indaial, 5, 1 (2017), 105–116. issn=2525-8346.
Amanda Enander and José Cardoso. 2020. How is employee turnover related to employee retention? A systematic review on two sets of meta-analyses. (2020).
Alessandra Flávia da Silva Ferreira. 2022. Turnover e o custo da rotatividade: um estudo de caso em uma startup de tecnologia no Estado do Rio Grande do Norte.
Guilherme Luiz Frufrek and Luciano Tadeu Esteves Pansanato. 2015. Employee turnover: An analysis of Brazilian software development professionals. In 8th IADIS International Conference on Information Systems, IS 2015. 145–152.
Bruna Guimarães Gupy. 2022. Saiba como calcular o custo do turnover de forma simples. Disponível em: [link]. Acesso em: 20 Julho 2023.
Mariana Dias Gupy. 2023. Turnover: o que é, como calcular e qual o impacto da rotatividade na empresa. Disponível em: [link]. Acesso em 10 Junho 2023.
Sebastian Kaiser. 2019. The difference between Design Thinking & Design Science. Disponível em: [link]. Acesso em 12 Agosto 2023.
B. MACEDO. 2022. Setor de tecnologia cresce mais de 60% durante a pandemia, aponta estudo. Retrieved July 20, 2023 from [link]
Philipp Offermann, Olga Levina, Marten Schönherr, and Udo Bub. 2009. Outline of a design science research process. In Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology. 1–11.
Henry Ongori. 2007. A review of the literature on employee turnover. Academic Journals, [link] (2007).
Glaucia Jardim Pissinelli, Leonardo Tomazelli Duarte, and Cristiano Torezzan. [n. d.]. UM MODELO DE REGRESS AO LOGÍSTICA MULTIPLA PARA PREDIC AO DE TURNOVER–UMA APLICAC AO EM PEOPLE ANALYTICS.
PRICEWATERHOUSECOOPERS. 2017. Workforce of the future. The competing forces shaping 2030. Retrieved Mar 2, 2024 from [link]
Evy Rombaut and Marie-Anne Guerry. 2018. Predicting voluntary turnover through human resources database analysis. Management Research Review 41, 1 (jan 2018), 96–112. DOI 10.1108/MRR-04-2017-0098.
Aline Cavalcante Santana, Cleyton Mário de Oliveira Rodrigues, Ivaldir Honório de Farias Junior, and Wylliams Barbosa Santos. 2023. OntoTurnover:: A Lightweight Domain Ontology for Modeling Employee Turnover. In 2023 18th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 1–4.
Anton F. Schlechter, Chantal Syce, and Mark Bussin2. 2016. Predicting voluntary turnover in employees using demographic characteristics: A South African case study. Acta Commercii - Independent Research Journal in the Management Sciences (jan 2016), 1–10. ISSN: (Online) 1684-1999, (Print) 2413-1903.
Sharecare. 2020. Modelagem preditiva: o que é, para que serve e como implementar? Disponível em: [link]. Acesso em 6 Julho 2023.
Lynn McFarlane Shore and Harry J Martin. 1989. Job satisfaction and organizational commitment in relation to work performance and turnover intentions. Human relations 42, 7 (1989), 625–638.
Cibele Cardoso da Silveira. 2011. Análise de turnover na química Brasil LTDA. [link]
Godwin J Udo, Tor Guimaraes, and Magid Igbaria. 1997. An investigation of the antecedents of turnover intention for manufacturing plant managers. International Journal of Operations & Production Management 17, 9 (1997), 912–930.
Yue Zhao, Maciej Hryniewicki, Francesca Cheng, Boyang Fu, and Xiaoyu Zhu. 2018. Employee Turnover Prediction with Machine Learning: A Reliable Approach. In Conference: 2018 Intelligent System Conference (Intellisys), IEEEAt: London, UK. 737–758. DOI: 10.1007/978-3-030-01057-7
Publicado
19/05/2025
Como Citar
MOURA, Valéria; SOUZA, Antonio Willian; FRANÇA, César.
Turnover Management Method Based in Predictive Analysis. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 21. , 2025, Recife/PE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 201-210.
DOI: https://doi.org/10.5753/sbsi.2025.246424.