Modernização de Arquiteturas de Sistemas para suporte à Transformação Digital

  • Pablo Luiz Leon UFABC
  • Flávio Horita UFABC

Resumo


Com a massificação no uso da tecnologia, empresas e o governo têm empregado tecnologias para viabilizar a transformação digital dos produtos e serviços demandados pela sociedade. Contudo, a descentralização dos sistemas torna-se importante para criar novas soluções e/ou serviços aos usuários com uma experiência mais conectada e em tempo real. Há dois desafios: 1) como descentralizar os sistemas legados existentes para fornecer uma solução de tecnologia que atenda as novas necessidades dos usuários desta sociedade mais digital; e 2) como criar uma arquitetura de sistemas que contemple as característıcas inerentes na transformação digital. Neste sentido, esta proposta de projeto busca apresentar uma abordagem de modernização de sistemas legados de maneira à convergir os negócios um cenàrio de transformação digital.
Palavras-chave: Modernização de Arquiteturas de Sistemas, Transformação Digital, Sistemas legados

Referências

Berman, S. J., Bell, R., et al. (2011). Digital transformation: Creating new business models where digital meets physical. IBM Institute for Business Value, pages 1-17.

Bogner, J., Fritzsch, J.,Wagner, S., and Zimmermann, A. (2019). Microservices in Industry: Insights into Technologies, Characteristics, and Software Quality. Proceedings - 2019 IEEE International Conference on Software Architecture - Companion, ICSA-C 2019, (March):187-195.

Chawla, H. and Kathuria, H. (2019). Building Microservices Applications on Microsoft Azure. Building Microservices Applications on Microsoft Azure, pages 1-20.

Choudhary, S., Thomas, I., Bahrami, M., and Sumioka, M. (2019). Accelerating the digital transformation of business and society through composite business ecosystems. In International Conference on Advanced Information Networking and Applications, pages 419-V430. Springer.

Computing, S. J. (2017). AN OVERVIEW OF SELF-ADAPTIVE TECHNIQUES. 11(2):115-136.

Desmet, D., Loffler, M., and Weinberg, A. (2016). Modernizing it for a digital era. Mc-Kinsey, September.

Dragicevic, Z. and Bosnjak, S. (2019). Agile architecture in the digital era: Trends and practices. Strategic Management, 24(2):12-33.

Fritzsch, J., Bogner, J., Wagner, S., and Zimmermann, A. (2019). Microservices Migration in Industry: Intentions, Strategies, and Challenges. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 481-490.

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., and Barros, A. (2017). Migrating enterprise legacy source code to microservices: on multitenancy, statefulness, and data consistency. IEEE Software, 35(3):63-72.

Gkikopoulos, P. (2019). Data distribution and exploitation in a global microservice artefact observatory. In 2019 IEEE World Congress on Services (SERVICES), volume 2642, pages 319-322. IEEE.

Gouigoux, J. and Tamzalit, D. (2017). From monolith to microservices: Lessons learned on an industrial migration to a web oriented architecture. In 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), pages 62-65.

Inocêncio, T. J., Gonzales, G. R., Cavalcante, E., and Horita, F. E. (2019). Emergent behavior in system-of-systems: A systematic mapping study. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering, pages 140-149.

Jamshidi, P., Pahl, C., Mendonc¡Ma, N. C., Lewis, J., and Tilkov, S. (2018). Microservices: The journey so far and challenges ahead. IEEE Software, 35(3):24-35.

Karimi, J. andWalter, Z. (2015). The role of dynamic capabilities in responding to digital disruption: A factor-based study of the newspaper industry. Journal of Management Information Systems, 32(1):39-81.

Levcovitz, A., Terra, R., and Valente, M. T. (2016). Towards a technique for extracting microservices from monolithic enterprise systems. arXiv preprint arXiv:1605.03175.

Linthicum, D. S. (2016). Practical use of microservices in moving workloads to the cloud. IEEE Cloud Computing, 3(5):6-9.

Maier, M. W. (1996). Architecting principles for systems-of-systems. INCOSE International Symposium, 6(1):565-573.

Neto, V. V. G., Paes, C. E. B., Garc¡¦es, L., Guessi, M., Manzano, W., Oquendo, F., and Nakagawa, E. Y. (2017). Stimuli-sos: a model-based approach to derive stimuli generators for simulations of systems-of-systems software architectures. Journal of the Brazilian Computer Society, 23(1):13.

Nili, A., Tate, M., Johnstone, D., and Gable, G. G. (2014). A framework for qualitative analysis of focus group data in information systems. In Proceedings of the 25th Australasian Conference on Information Systems, Auckland, New Zealand.

Rademacher, F., Sorgalla, J., and Sachweh, S. (2018). Challenges of domain-driven microservice design: A model-driven perspective. IEEE Software, 35(03):36-43.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Transactions on Software Engeneering, 25(3):1-16.

Singh, A. and Hess, T. (2017). How chief digital officers promote the digital transformation of their companies. MIS Quarterly Executive, 16(1).

Vermesan, O. and Bacquet, J. (2017). Cognitive Hyperconnected Digital Transformation: Internet of Things Intelligence Evolution. River Publishers.

Viggiato, M., Terra, R., Rocha, H., Valente, M. T., and Figueiredo, E. (2018). Microservices in practice: A survey study. arXiv preprint arXiv:1808.04836.

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., and Krcmar, H. (2019). The DevOps phenomenon. Queue, 17(2):1-20.
Publicado
03/11/2020
LEON, Pablo Luiz; HORITA, Flávio. Modernização de Arquiteturas de Sistemas para suporte à Transformação Digital. In: WORKSHOP DE TESES E DISSERTAÇÕES EM SISTEMAS DE INFORMAÇÃO - SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 16. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 61-66. DOI: https://doi.org/10.5753/sbsi.2020.13128.