ClearFace: Facial Acne Detection and Classification System Using YOLOv11 and EfficientNet-B0
Resumo
Facial acne is a highly prevalent dermatological condition that significantly affects individuals’ physical and psychological well-being. Although clinical diagnosis remains the gold standard, limited access to specialized care highlights the need for scalable, automated solutions. This study presents a deep learning-based system for the detection and classification of facial acne lesions, combining object detection and image classification techniques. The YOLOv11-m model was employed to localize lesions in facial images, followed by classification using an EfficientNet-B0 network. To train and evaluate the system, the Acne21 dataset was adapted to a two-stage pipeline: bounding boxes were used for detection, while cropped regions were labeled into six classes for classification. The system generates lesion counts and calculates the Investigator’s Global Assessment (IGA) severity score based on clinical weights. Experimental results demonstrate the model’s effectiveness in detecting and categorizing different lesion types, offering a promising tool for preliminary acne self-assessment in mobile health applications. This approach contributes to the advancement of accessible dermatological care through AI-driven technologies.Referências
A. L. Zaenglein, “Acne vulgaris,” New England Journal of Medicine, vol. 379, no. 14, pp. 1343–1352, 2018.
D. V. Samuels, R. Rosenthal, R. Lin, S. Chaudhari, and M. N. Natsuaki, “Acne vulgaris and risk of depression and anxiety: a meta-analytic review,” Journal of the American Academy of Dermatology, vol. 83, no. 2, pp. 532–541, 2020.
I. Vallerand, R. Lewinson, L. Parsons, M. Lowerison, A. Frolkis, G. Kaplan, C. Barnabe, A. Bulloch, and S. Patten, “Risk of depression among patients with acne in the uk: a population-based cohort study,” British Journal of Dermatology, vol. 178, no. 3, pp. e194–e195, 2018.
X. Wu, N. Wen, J. Liang, Y.-K. Lai, D. She, M.-M. Cheng, and J. Yang, “Joint acne image grading and counting via label distribution learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
Y. Akpinar Kara and D. Ozdemir, “Evaluation of food consumption in patients with acne vulgaris and its relationship with acne severity,” Journal of cosmetic dermatology, vol. 19, no. 8, pp. 2109–2113, 2020.
E. Nasr-Esfahani, S. Samavi, N. Karimi, S. Soroushmehr, M. Jafari, K. Ward, and K. Najarian, “2016 38th annual international conference of the ieee engineering in medicine and biology society (embc),” Melanoma detection by analysis of clinical images using convolutional neural network, pp. 1373–1376, 2016.
Y. Fujisawa, Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka, R. Watanabe, N. Okiyama, K. Ohara, and M. Fujimoto, “Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis,” British Journal of Dermatology, vol. 180, no. 2, pp. 373–381, 02 2019. [Online]. DOI: 10.1111/bjd.16924
K. R. Glines, W. Haidari, L. Ramani, Z. M. Akkurt, and S. R. Feldman, “Digital future of dermatology,” Dermatology online journal, vol. 26, no. 10, 2020.
N. Saranummi, “Ieee transactions on information technology in biomedicine (t-itb),” IEEE Transactions on Information Technology in Biomedicine, vol. 7, no. 4, pp. 226–226, 2004.
J. D. Bernhard, “Journal of the american academy of dermatology editorial office,” Journal of the American Academy of Dermatology, vol. 49, no. 6, p. 1028, 2003.
K. Byamba, S. Syed-Abdul, M. García-Romero, C.-W. Huang, S. Nergyi, A. Nyamdorj, P.-A. Nguyen, U. Iqbal, K. Paik, L. Celi et al., “Mobile teledermatology for a prompter and more efficient dermatological care in rural mongolia,” British Journal of Dermatology, vol. 173, no. 1, pp. 265–267, 2015.
F. M. Walocko and T. Tejasvi, “Teledermatology applications in skin cancer diagnosis,” Dermatologic clinics, vol. 35, no. 4, pp. 559–563, 2017.
S. Ouellette and B. K. Rao, “Usefulness of smartphones in dermatology: a us-based review,” International Journal of Environmental Research and Public Health, vol. 19, no. 6, p. 3553, 2022.
R. S. Azfar, J. L. Weinberg, G. Cavric, I. A. Lee-Keltner, W. B. Bilker, J. M. Gelfand, and C. L. Kovarik, “Hiv-positive patients in botswana state that mobile teledermatology is an acceptable method for receiving dermatology care,” Journal of telemedicine and telecare, vol. 17, no. 6, pp. 338–340, 2011.
I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing network design spaces,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 428–10 436.
R. A. Diptho and S. Basak, “Enhancing dermatological diagnosis through medical image analysis: How effective is yolo11 compared to leading cnn models?” NDT, vol. 3, no. 2, p. 11, 2025.
G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available: [link]
J. Torous, H. Wisniewski, B. Bird, E. Carpenter, G. David, E. Elejalde, D. Fulford, S. Guimond, R. Hays, P. Henson et al., “Creating a digital health smartphone app and digital phenotyping platform for mental health and diverse healthcare needs: an interdisciplinary and collaborative approach,” Journal of Technology in Behavioral Science, vol. 4, no. 2, pp. 73–85, 2019.
H. Cortés, M. Rojas-Márquez, M. L. Del Prado-Audelo, O. D. Reyes-Hernández, M. González-Del Carmen, and G. Leyva-Gómez, “Alterations in mental health and quality of life in patients with skin disorders: a narrative review,” International journal of dermatology, vol. 61, no. 7, pp. 783–791, 2022.
A. C. Brewer, D. C. Endly, J. Henley, M. Amir, B. P. Sampson, J. F. Moreau, and R. P. Dellavalle, “Mobile applications in dermatology,” JAMA dermatology, vol. 149, no. 11, pp. 1300–1304, 2013.
K. Tran, M. Ayad, J. Weinberg, A. Cherng, M. Chowdhury, S. Monir, M. El Hariri, and C. Kovarik, “Mobile teledermatology in the developing world: implications of a feasibility study on 30 egyptian patients with common skin diseases,” Journal of the American Academy of Dermatology, vol. 64, no. 2, pp. 302–309, 2011.
H. Kim, J. Kim, E. Jung, D. Park, and J. Roh, “Mobile application in dermatology: a useful tool for better communication and patient education,” Hong Kong Journal of Dermatology & Venereology, vol. 2, no. 26, pp. 67–70, 2018.
S. J. Lofgreen, K. Ashack, K. A. Burton, and R. P. Dellavalle, “Mobile device use in dermatologic patient care,” Current Dermatology Reports, vol. 5, no. 2, pp. 77–82, 2016.
L. C. De Guzman, R. P. C. Maglaque, V. M. B. Torres, S. P. A. Zapido, and M. O. Cordel, “Design and evaluation of a multi-model, multilevel artificial neural network for eczema skin lesion detection,” in 2015 3rd International conference on artificial intelligence, modelling and simulation (AIMS). IEEE, 2015, pp. 42–47.
U. P. Sudhakara, H. Hebbar, G. Arunkumar, and N. Sampathila, “A technology framework for remote patient care in dermatology for early diagnosis,” Informatics in Medicine Unlocked, vol. 15, p. 100171, 2019.
E. Göçeri, “Impact of deep learning and smartphone technologies in dermatology: Automated diagnosis,” in 2020 tenth international conference on image processing theory, tools and applications (IPTA). IEEE, 2020, pp. 1–6.
E. Goceri, “Diagnosis of skin diseases in the era of deep learning and mobile technology,” Computers in Biology and Medicine, vol. 134, p. 104458, 2021.
S. Wongvibulsin, M. J. Yan, V. Pahalyants, W. Murphy, R. Daneshjou, and V. Rotemberg, “Current state of dermatology mobile applications with artificial intelligence features,” JAMA dermatology, vol. 160, no. 6, pp. 646–650, 2024.
P. P. Rebouças Filho, S. A. Peixoto, R. V. M. da Nóbrega, D. J. Hemanth, A. G. Medeiros, A. K. Sangaiah, and V. H. C. de Albuquerque, “Automatic histologically-closer classification of skin lesions,” Computerized Medical Imaging and Graphics, vol. 68, pp. 40–54, 2018.
A. De, A. Sarda, S. Gupta, and S. Das, “Use of artificial intelligence in dermatology,” Indian journal of dermatology, vol. 65, no. 5, pp. 352–357, 2020.
T. J. Brinker, A. Hekler, A. H. Enk, J. Klode, A. Hauschild, C. Berking, B. Schilling, S. Haferkamp, D. Schadendorf, S. Fröhling et al., “A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task,” European Journal of Cancer, vol. 111, pp. 148–154, 2019.
M.-J. Yim, J. M. Lee, H.-S. Kim, G. Choi, Y.-M. Kim, D.-S. Lee, and I.-W. Choi, “Inhibitory effects of a sargassum miyabei yendo on cutibacterium acnes-induced skin inflammation,” Nutrients, vol. 12, no. 9, p. 2620, 2020.
A. Sangha and M. Rizvi, “Detection of acne by deep learning object detection,” medRxiv, 2021.
“Automatic acne object detection and acne severity grading using smartphone images and artificial intelligence,” Diagnostics, vol. 12, no. 8, 2022.
“Acne detection by ensemble neural networks,” Sensors, vol. 22, no. 18, 2022.
“Acne8m: An acne detection and differential diagnosis system using ai technologies,” 2023, study link provided, no DOI available.
“Acne vulgaris detection and classification: A dual integrated deep cnn model,” Informatica (Slovenia), vol. 47, no. 4, 2023.
C. Huang et al., “A computer vision application for assessing facial acne severity from selfie images,” [link], 2019.
Z. Xu et al., “Acnet: Mask-aware attention with dynamic context enhancement for robust acne detection,” [link], 2021.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” 2017.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in European Conference on Computer Vision (ECCV). Springer, 2016.
S. Vijayarani and S. Dhivya, “Facial acne classification using image processing and machine learning,” International Journal of Computer Applications, vol. 123, no. 9, 2015.
P. K. Kalra, A. Ghosh, and A. Kumar, “Acne detection using clustering based image segmentation and texture feature extraction with svm classifier,” Procedia Computer Science, vol. 167, pp. 2391–2400, 2019.
M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European Conference on Computer Vision. Springer, 2014, pp. 740–755.
H. Zhang and T. Ma, “Acne detection by ensemble neural networks,” Sensors, vol. 22, no. 18, 2022. [Online]. Available: [link]
X. Shen, J. Zhang, C. Yan, and H. Zhou, “An automatic diagnosis method of facial acne vulgaris based on convolutional neural network,” Scientific reports, vol. 8, no. 1, p. 5839, 2018.
R. Sabir and T. Mehmood, “Classification of melanoma skin cancer based on image data set using different neural networks,” Scientific Reports, vol. 14, no. 1, p. 29704, 2024.
J. Frederich, J. Himawan, and M. Rizkinia, “Skin lesion classification using efficientnet b0 and b1 via transfer learning for computer aided diagnosis,” in AIP Conference Proceedings, vol. 3080, no. 1. AIP Publishing, 2024.
H. Alsulaimani, A. Kokandi, S. Khawandanh, and R. Hamad, “Severity of acne vulgaris: comparison of two assessment methods,” Clinical, cosmetic and investigational dermatology, pp. 711–716, 2020.
D. V. Samuels, R. Rosenthal, R. Lin, S. Chaudhari, and M. N. Natsuaki, “Acne vulgaris and risk of depression and anxiety: a meta-analytic review,” Journal of the American Academy of Dermatology, vol. 83, no. 2, pp. 532–541, 2020.
I. Vallerand, R. Lewinson, L. Parsons, M. Lowerison, A. Frolkis, G. Kaplan, C. Barnabe, A. Bulloch, and S. Patten, “Risk of depression among patients with acne in the uk: a population-based cohort study,” British Journal of Dermatology, vol. 178, no. 3, pp. e194–e195, 2018.
X. Wu, N. Wen, J. Liang, Y.-K. Lai, D. She, M.-M. Cheng, and J. Yang, “Joint acne image grading and counting via label distribution learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
Y. Akpinar Kara and D. Ozdemir, “Evaluation of food consumption in patients with acne vulgaris and its relationship with acne severity,” Journal of cosmetic dermatology, vol. 19, no. 8, pp. 2109–2113, 2020.
E. Nasr-Esfahani, S. Samavi, N. Karimi, S. Soroushmehr, M. Jafari, K. Ward, and K. Najarian, “2016 38th annual international conference of the ieee engineering in medicine and biology society (embc),” Melanoma detection by analysis of clinical images using convolutional neural network, pp. 1373–1376, 2016.
Y. Fujisawa, Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka, R. Watanabe, N. Okiyama, K. Ohara, and M. Fujimoto, “Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis,” British Journal of Dermatology, vol. 180, no. 2, pp. 373–381, 02 2019. [Online]. DOI: 10.1111/bjd.16924
K. R. Glines, W. Haidari, L. Ramani, Z. M. Akkurt, and S. R. Feldman, “Digital future of dermatology,” Dermatology online journal, vol. 26, no. 10, 2020.
N. Saranummi, “Ieee transactions on information technology in biomedicine (t-itb),” IEEE Transactions on Information Technology in Biomedicine, vol. 7, no. 4, pp. 226–226, 2004.
J. D. Bernhard, “Journal of the american academy of dermatology editorial office,” Journal of the American Academy of Dermatology, vol. 49, no. 6, p. 1028, 2003.
K. Byamba, S. Syed-Abdul, M. García-Romero, C.-W. Huang, S. Nergyi, A. Nyamdorj, P.-A. Nguyen, U. Iqbal, K. Paik, L. Celi et al., “Mobile teledermatology for a prompter and more efficient dermatological care in rural mongolia,” British Journal of Dermatology, vol. 173, no. 1, pp. 265–267, 2015.
F. M. Walocko and T. Tejasvi, “Teledermatology applications in skin cancer diagnosis,” Dermatologic clinics, vol. 35, no. 4, pp. 559–563, 2017.
S. Ouellette and B. K. Rao, “Usefulness of smartphones in dermatology: a us-based review,” International Journal of Environmental Research and Public Health, vol. 19, no. 6, p. 3553, 2022.
R. S. Azfar, J. L. Weinberg, G. Cavric, I. A. Lee-Keltner, W. B. Bilker, J. M. Gelfand, and C. L. Kovarik, “Hiv-positive patients in botswana state that mobile teledermatology is an acceptable method for receiving dermatology care,” Journal of telemedicine and telecare, vol. 17, no. 6, pp. 338–340, 2011.
I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing network design spaces,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 428–10 436.
R. A. Diptho and S. Basak, “Enhancing dermatological diagnosis through medical image analysis: How effective is yolo11 compared to leading cnn models?” NDT, vol. 3, no. 2, p. 11, 2025.
G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available: [link]
J. Torous, H. Wisniewski, B. Bird, E. Carpenter, G. David, E. Elejalde, D. Fulford, S. Guimond, R. Hays, P. Henson et al., “Creating a digital health smartphone app and digital phenotyping platform for mental health and diverse healthcare needs: an interdisciplinary and collaborative approach,” Journal of Technology in Behavioral Science, vol. 4, no. 2, pp. 73–85, 2019.
H. Cortés, M. Rojas-Márquez, M. L. Del Prado-Audelo, O. D. Reyes-Hernández, M. González-Del Carmen, and G. Leyva-Gómez, “Alterations in mental health and quality of life in patients with skin disorders: a narrative review,” International journal of dermatology, vol. 61, no. 7, pp. 783–791, 2022.
A. C. Brewer, D. C. Endly, J. Henley, M. Amir, B. P. Sampson, J. F. Moreau, and R. P. Dellavalle, “Mobile applications in dermatology,” JAMA dermatology, vol. 149, no. 11, pp. 1300–1304, 2013.
K. Tran, M. Ayad, J. Weinberg, A. Cherng, M. Chowdhury, S. Monir, M. El Hariri, and C. Kovarik, “Mobile teledermatology in the developing world: implications of a feasibility study on 30 egyptian patients with common skin diseases,” Journal of the American Academy of Dermatology, vol. 64, no. 2, pp. 302–309, 2011.
H. Kim, J. Kim, E. Jung, D. Park, and J. Roh, “Mobile application in dermatology: a useful tool for better communication and patient education,” Hong Kong Journal of Dermatology & Venereology, vol. 2, no. 26, pp. 67–70, 2018.
S. J. Lofgreen, K. Ashack, K. A. Burton, and R. P. Dellavalle, “Mobile device use in dermatologic patient care,” Current Dermatology Reports, vol. 5, no. 2, pp. 77–82, 2016.
L. C. De Guzman, R. P. C. Maglaque, V. M. B. Torres, S. P. A. Zapido, and M. O. Cordel, “Design and evaluation of a multi-model, multilevel artificial neural network for eczema skin lesion detection,” in 2015 3rd International conference on artificial intelligence, modelling and simulation (AIMS). IEEE, 2015, pp. 42–47.
U. P. Sudhakara, H. Hebbar, G. Arunkumar, and N. Sampathila, “A technology framework for remote patient care in dermatology for early diagnosis,” Informatics in Medicine Unlocked, vol. 15, p. 100171, 2019.
E. Göçeri, “Impact of deep learning and smartphone technologies in dermatology: Automated diagnosis,” in 2020 tenth international conference on image processing theory, tools and applications (IPTA). IEEE, 2020, pp. 1–6.
E. Goceri, “Diagnosis of skin diseases in the era of deep learning and mobile technology,” Computers in Biology and Medicine, vol. 134, p. 104458, 2021.
S. Wongvibulsin, M. J. Yan, V. Pahalyants, W. Murphy, R. Daneshjou, and V. Rotemberg, “Current state of dermatology mobile applications with artificial intelligence features,” JAMA dermatology, vol. 160, no. 6, pp. 646–650, 2024.
P. P. Rebouças Filho, S. A. Peixoto, R. V. M. da Nóbrega, D. J. Hemanth, A. G. Medeiros, A. K. Sangaiah, and V. H. C. de Albuquerque, “Automatic histologically-closer classification of skin lesions,” Computerized Medical Imaging and Graphics, vol. 68, pp. 40–54, 2018.
A. De, A. Sarda, S. Gupta, and S. Das, “Use of artificial intelligence in dermatology,” Indian journal of dermatology, vol. 65, no. 5, pp. 352–357, 2020.
T. J. Brinker, A. Hekler, A. H. Enk, J. Klode, A. Hauschild, C. Berking, B. Schilling, S. Haferkamp, D. Schadendorf, S. Fröhling et al., “A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task,” European Journal of Cancer, vol. 111, pp. 148–154, 2019.
M.-J. Yim, J. M. Lee, H.-S. Kim, G. Choi, Y.-M. Kim, D.-S. Lee, and I.-W. Choi, “Inhibitory effects of a sargassum miyabei yendo on cutibacterium acnes-induced skin inflammation,” Nutrients, vol. 12, no. 9, p. 2620, 2020.
A. Sangha and M. Rizvi, “Detection of acne by deep learning object detection,” medRxiv, 2021.
“Automatic acne object detection and acne severity grading using smartphone images and artificial intelligence,” Diagnostics, vol. 12, no. 8, 2022.
“Acne detection by ensemble neural networks,” Sensors, vol. 22, no. 18, 2022.
“Acne8m: An acne detection and differential diagnosis system using ai technologies,” 2023, study link provided, no DOI available.
“Acne vulgaris detection and classification: A dual integrated deep cnn model,” Informatica (Slovenia), vol. 47, no. 4, 2023.
C. Huang et al., “A computer vision application for assessing facial acne severity from selfie images,” [link], 2019.
Z. Xu et al., “Acnet: Mask-aware attention with dynamic context enhancement for robust acne detection,” [link], 2021.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” 2017.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in European Conference on Computer Vision (ECCV). Springer, 2016.
S. Vijayarani and S. Dhivya, “Facial acne classification using image processing and machine learning,” International Journal of Computer Applications, vol. 123, no. 9, 2015.
P. K. Kalra, A. Ghosh, and A. Kumar, “Acne detection using clustering based image segmentation and texture feature extraction with svm classifier,” Procedia Computer Science, vol. 167, pp. 2391–2400, 2019.
M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European Conference on Computer Vision. Springer, 2014, pp. 740–755.
H. Zhang and T. Ma, “Acne detection by ensemble neural networks,” Sensors, vol. 22, no. 18, 2022. [Online]. Available: [link]
X. Shen, J. Zhang, C. Yan, and H. Zhou, “An automatic diagnosis method of facial acne vulgaris based on convolutional neural network,” Scientific reports, vol. 8, no. 1, p. 5839, 2018.
R. Sabir and T. Mehmood, “Classification of melanoma skin cancer based on image data set using different neural networks,” Scientific Reports, vol. 14, no. 1, p. 29704, 2024.
J. Frederich, J. Himawan, and M. Rizkinia, “Skin lesion classification using efficientnet b0 and b1 via transfer learning for computer aided diagnosis,” in AIP Conference Proceedings, vol. 3080, no. 1. AIP Publishing, 2024.
H. Alsulaimani, A. Kokandi, S. Khawandanh, and R. Hamad, “Severity of acne vulgaris: comparison of two assessment methods,” Clinical, cosmetic and investigational dermatology, pp. 711–716, 2020.
Publicado
30/09/2025
Como Citar
VIANA, Thierrir Alencar da S.; GONÇALVES, Ismael Henrique; PAULA, Isaías Silva de; SILVA, Francisco Hércules dos S.; REBOUÇAS FILHO, Pedro P..
ClearFace: Facial Acne Detection and Classification System Using YOLOv11 and EfficientNet-B0. In: WORKSHOP DE TRABALHOS EM ANDAMENTO - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 38. , 2025, Salvador/BA.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 132-137.
